Wound healing is a complicated process that contains a number of overlapping and consecutive phases, disruption in each of which can cause chronic nonhealing wounds. In the current study, we investigated the effects of exosomes as paracrine factors released from menstrual blood-derived mesenchymal stem cells (MenSCs) on wound-healing process in diabetic mice. The exosomes were isolated from MenSCs conditioned media using ultracentrifugation and were characterized by scanning electron microscope and western blotting assay. A full thickness excisional wound was created on the dorsal skin of each streptozotocin-induced diabetic mouse. The mice were divided into three groups as follows: phosphate buffered saline, exosomes, and MenSC groups. We found that MenSC-derived exosomes can resolve inflammation via induced M1-M2 macrophage polarization. It was observed that exosomes enhance neoangiogenesis through vascular endothelial growth factor A upregulation.Re-epithelialization accelerated in the exosome-treated mice, most likely through NF-κB p65 subunit upregulation and activation of the NF-κB signaling pathway. The results demonstrated that exosomes possibly cause less scar formation through decreased Col1:Col3 ratio. These notable results showed that the MenSC-derived exosomes effectively ameliorated cutaneous nonhealing wounds. We suggest that exosomes can be employed in regenerative medicine for skin repair in difficult-toheal conditions such as diabetic foot ulcer.
KEYWORDSangiogenesis, diabetic murine model, excisional wound, exosome, menstrual blood, mesenchymal stem cell
Background: The ability to isolate extracellular vesicles (EVs) from blood is vital in the development of EVs as disease biomarkers. Both serum and plasma can be used, but few studies have compared these sources in terms of the type of EVs that are obtained. The aim of this study was to determine the presence of different subpopulations of EVs in plasma and serum.
Method: Blood was collected from healthy subjects, and plasma and serum were isolated in parallel. ACD or EDTA tubes were used for the collection of plasma, while serum was obtained in clot activator tubes. EVs were isolated utilising a combination of density cushion and SEC, a combination of density cushion and gradient or by a bead antibody capturing system (anti‐CD63, anti‐CD9 and anti‐CD81 beads). The subpopulations of EVs were analysed by NTA, Western blot, SP‐IRIS, conventional and nano flow cytometry, magnetic bead ELISA and mass spectrometry. Additionally, different isolation protocols for plasma were compared to determine the contribution of residual platelets in the analysis.
Results: This study shows that a higher number of CD9+ EVs were present in EDTA‐plasma compared to ACD‐plasma and to serum, and the presence of CD41a on these EVs suggests that they were released from platelets. Furthermore, only a very small number of EVs in blood were double‐positive for CD63 and CD81. The CD63+ EVs were enriched in serum, while CD81+ vesicles were the rarest subpopulation in both plasma and serum. Additionally, EDTA‐plasma contained more residual platelets than ACD‐plasma and serum, and two centrifugation steps were crucial to reduce the number of platelets in plasma prior to EV isolation.
Conclusion: These results show that human blood contains multiple subpopulations of EVs that carry different tetraspanins. Blood sampling methods, including the use of anti‐coagulants and choice of centrifugation protocols, can affect EV analyses and should always be reported in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.