This paper presents a two-stage maximum power point tracking (MPPT) controller using Artificial Neural Network (ANN) for photovoltaic (PV) standalone system, under varying weather conditions of solar irradiation and module temperature. At the first-stage, the ANN algorithm locates the maximum power point (MPP) associated to solar irradiation and module temperature. Then, a simple controller at the second-step, by changing the duty cycle of a DC-DC boost converter, tracks the MPP. In this method, in addition to experimental data collection for training the ANN, a circuit is designed in MATLAB-Simulink to acquire data for whole ranges of weather condition. The whole system is simulated in Simulink. Simulation results show small transient response time, and low power oscillation in steady-state. Furthermore, dynamic response verifies that this method is very fast and precise at tracking the MPP under rapidly changing irradiation, and has very low power oscillation under slowly changing irradiation. Experimental results are provided to verify the simulation results as well.
Photovoltaic system (PV) has nonlinear characteristics which are affected by changing the climate conditions and, in these characteristics, there is an operating point in which the maximum available power of PV is obtained. Fuzzy logic controller (FLC) is the artificial intelligent based maximum power point tracking (MPPT) method for obtaining the maximum power point (MPP). In this method, defining the logical rule and specific range of membership function has the significant effect on achieving the best and desirable results. This paper presents a detailed comparative survey of five general and main fuzzy logic subsets used for FLC technique in DC-DC boost converter. These rules and specific range of membership functions are implemented in the same system and the best fuzzy subset is obtained from the simulation results carried out in MATLAB. The proposed subset is able to track the maximum power point in minimum time with small oscillations and the highest system efficiency (95.7%). This investigation provides valuable results for all users who want to implement the reliable fuzzy logic subset for their works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.