This work describes the development of a novel electrochemical sensor based on electrodeposition of copper oxide nanoparticles onto carbon nanoparticle (CNP) film modified electrode for the analysis of the anti‐HIV drug, nevirapine (NEV). The electrochemical experiments were performed using linear sweep and cyclic voltammetry. Atomic force microscopy was applied for surface characterization of the deposited modifier film (CuO‐CNP) on glassy carbon electrode (GCE). No oxidation peak was observed for NEV on the bare GCE, but both CNP‐GCE and CuO‐CNP‐GCE showed a distinctive anodic response towards NEV with considerable enhancement (276‐fold and 350‐fold, respectively) compared to CuO‐GCE. The mechanism of the electrocatalytic process on the modified electrode surface was investigated by cyclic and linear sweep voltammetry at various potential sweep rates and pHs of the buffer solutions. The modified electrode exhibited linear dynamic range in three concentration intervals (0.1–0.8, 1–10 and 10–100 µM) with a detection limit of 66 nM. The stability, reproducibility, and repetitive usability exhibited by the proposed modified electrode are good enough to make it a suitable sensor for the determination of NEV in real samples with complex matrices such as human blood serum.
A novel voltammetric biosensor based on nano‐TiO2/nafion/carbon nanoparticles modified glassy carbon electrode (TiO2/N/CNP/GCE) was developed for the determination of dobutamine (DBA). Characterization of the surface morphology and property of TiO2/N/CNP layer was carried out by the scanning electron microscopy and atomic force microscopy. The electrochemical performance of the modified electrode was investigated by means of the cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy techniques. Effective experimental variables, such as the scan rate, pH of the supporting electrolyte, drop size of the casted modifier suspension and accumulation conditions of DBA on the surface of TiO2/N/CNP/GCE were optimized. Under the optimized conditions, a significant electrochemical improvement was observed toward the electro‐oxidation of DBA on the surface of TiO2/N/CNP/GCE compared to the bare GCE. Under the optimized conditions, a wide linear dynamic range (6 nM–1 µM) with a low detection limit of 2 nM for DBA was resulted. The prepared modified electrode shows high sensitivity, stability and good reproducibility in the determination of DBA concentrations. Satisfactory results were obtained for DBA analysis in the pharmaceutical and clinical preparations using TiO2/N/CNP/GCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.