Curcumin–dextran conjugate was synthesized by free radical grafting reaction between curcumin and dextran. The chemical characterization of the conjugate was obtained by Fourier-transform infrared and 1H-NMR (proton nuclear magnetic resonance) spectroscopy analysis, while the functionalization degree was determined by the Folin–Ciocalteu assay, finding a 22.93 mg of curcumin/g of dextran conjugate. Antioxidant activity of curcumin and curcumin–dextran conjugate was investigated employing DPPH• radical method, and IC50 (the half maximal inhibitory concentration) values of curcumin and the curcumin–dextran conjugate (Cur equivalents) were 86.6 ± 0.1 and 17.4 ± 1 µM, respectively. The presence of dextran into the curcumin–dextran conjugate improved radical scavenging activities of the curcumin. In addition, antimicrobial effect of curcumin and curcumin–dextran conjugate was evaluated against gram-positive ( Listeria monocytogenes and Staphylococcus aureus) and gram-negative ( Escherichia coli O157:H7 and Salmonella typhimurium) bacteria. According to our experiments, gram-positive microorganisms are more sensitive to these compounds than gram-negative ones. Curcumin–dextran is a more potent bacteriostat ( S. aureus (minimum inhibitory concentration = 0.008 µg/mL), E. coli O157:H7 (minimum inhibitory concentration = 250 µg/mL), and S. typhimurium (minimum inhibitory concentration = 500 µg/mL)) and also a more potent bacteriosid against S. aureus and S. typhimurium than curcumin. The cytotoxic effects of the curcumin–dextran conjugate toward AGS, MCF-7, and normal fibroblast cell lines were determined at 48 and 72 h using an MTT assay. The results revealed the considerable antiproliferative effects of the curcumin–dextran conjugate in both AGS and MCF-7 cancer cells in comparison with fibroblast cells. This study shows that dextran as a versatile scaffold develops the biological activities of curcumin by covalent grafting and can be regarded in further bioapplications.
In this study, the effect of Cuminum cyminum L. essential oil (EO) and Lactobacillus acidophilus (a probiotic) on growth of Staphylococcus aureus in white brined cheese was evaluated. The experiment included different levels of EO (0, 7.5, 15 and 30 µL/100 mL milk) and L. acidophilus (0 and 0.5%) to assess their effects on S. aureus count during the manufacture, ripening and storage of Iranian white brined cheese for up to 75 days. The significant (P < 0.05) inhibitory effects of EO (even at its lowest concentration) and the probiotic on this organism were observed alone and in combination together. Considering the organoleptic evaluation of the EO used in this study, the best inhibitory effect was obtained at combination of EO = 15 µL/100 mL and probiotic = 0.5%.
PRACTICAL APPLICATIONS
The significant (P < 0.05) synergistic inhibitory effect of the EO and probiotic on S. aureus shown in this study can improve the scope of the EO function in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.