Central neuropathic pain (CNP) is a complicated medical problem that involves both the spinal and supraspinal regions of the central nervous system. Estrogen, a neuroprotective agent, has been considered a possible candidate for CNP treatment. In this study, we examined the effects of a single dose of 17β-estradiol on glutamate levels in the ventral posterolateral (VPL) nucleus of the rat thalamus. Furthermore, we determined whether there was a correlation between glutamate levels and neuropathic pain induced by unilateral electrolytic spinothalamic tract (STT) lesion. STT lesioning was performed in male Wistar rats at the T8-T9 vertebrae; rats were then administered 17β-estradiol (4 mg/kg, i.p.) 30 min after injury. Glutamate samples were collected using a microdialysis probe and quantified by high performance liquid chromatography. Mechanical allodynia (MA) and thermal hyperalgesia (TH) thresholds were measured pre-injury and 7, 14, and 28 days post-injury. We found that STT lesion significantly increased glutamate levels in the ipsilateral VPL nucleus 14 and 28 days post-injury; this was accompanied by allodynia and hyperalgesia in the hind paws of the rats. Administering 17β-estradiol to the rats decreased glutamate levels in the ipsilateral VPL nucleus and significantly increased MA and TH thresholds. These results suggest that glutamate in the VPL nucleus of the thalamus is involved in the pathology of neuropathic pain after STT injury; furthermore, 17β-estradiol may attenuate this neuropathic pain by decreasing glutamate levels.
Introduction:
Sex differences in outcomes of Spinal Cord Injury (SCI) suggest a sex-hormone-mediated effect on post-SCI pathological events, including glutamate excitotoxicity. This study aimed to investigate the importance of gonadal hormones on glutamate release subsequent to SCI in rats.
Methods:
After laminectomy at T8–T9, an electrolytic lesion was applied to the spinothalamic tracts of male and female rats. Using spinal microdialysis, we assessed glutamate levels at the site of lesion in both intact and gonadectomized rats for 4 hours. In this way, we examined the sex differences in the glutamate concentrations.
Results:
The peak retention time of glutamate level was 10.6 min and spinal glutamate concentration reached a maximum level 40 min following SCI. In male SCI rats, gonadectomy caused a significant elevation of glutamate level (P<0.001) following injury which was maximum 40 min post-SCI as well. However, no significant alterations were seen in gonadectomized female rats.
Conclusion:
The significant differences in glutamate levels between both intact and gonadectomized SCI male and female rats show the sex-hormone-related mechanisms underlying the molecular events in the second phase of SCI. It seems that the role of male gonadal hormones to prevent glutamate excitotoxicity is more prominent. The exact mechanisms of these hormones on the functional recovery after SCI should be clarified in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.