Plant protection based on novel alternative strategies is a major concern in agriculture to sustain pest management. The marc extract of red grape cultivars reveals plant defence inducer properties. Treatment with grape marc extract efficiently induced hypersensitive reaction-like lesions with cell death evidenced by Evans Blue staining of tobacco leaves. Examination of the infiltration zone and the surrounding areas under UV light revealed the accumulation of autofluorescent compounds. Both leaf infiltration and a foliar spray of the red grape extract on tobacco leaves induced defence gene expression. The PR1 and PR2 target genes were upregulated locally and systemically in tobacco plants following grape marc extract treatment. The grape extract elicited an array of plant defence responses making this natural compound a potential phytosanitary product with a challenging issue and a rather attractive option for sustainable agriculture and environmentally friendly practices.
To cite this version:Razik Benouaret, Eric Goujon, Pascale Goupil. Grape marc extract causes early perception events, defence reactions and hypersensitive response in cultured tobacco cells. Plant Physiology and Biochemistry, Elsevier, 2014Elsevier, , 77, pp.84-89. <10.1016Elsevier, /j.plaphy.2014.01.021>.
Alkyl gallates showed elicitor activities on tobacco in both whole plants and cell suspensions. Methyl gallate (MG), ethyl gallate (EG), and propyl gallate (PG) infiltration into tobacco leaves induced hypersensitive reaction-like lesions and topical production of autofluorescent compounds revealed under UV light. When sprayed on tobacco plants at 5 mM, EG promoted upregulation of defense-related genes such as the antimicrobial PR1, β-1,3-glucanase PR2, Chitinase PR3, and osmotin PR5 target genes. Tobacco BY-2 cells challenged with EG underwent cell death in 48 h, which was significantly reduced in the presence of the protease inhibitor aprotinin. The three alkyl gallates all caused alkalinization of the BY-2 extracellular medium, whereas gallic acid did not trigger any pH variation. Using EGTA or LaCl, we showed that Ca mobilization occurred in BY-2 cells elicited with EG. Overall, our findings are the first evidence of alkyl gallate elicitor properties with early perception events on the plasma membrane, potential hypersensitive reactions, and PR-related downstream defense responses in tobacco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.