Bronchopneumonia is an acute or chronic inflammation of the lungs, in which the alveoli and/or interstitial are affected. Usually the diagnosis of Bronchopneumonia is carried out using signs and symptoms of this disease, which cannot be measured since they consist of various types of uncertainty. Consequently, traditional disease diagnosis, which is performed by a physician, cannot deliver accurate results. Therefore, this paper presents the design, development and application of an expert system for assessing the suspicion of Bronchopneumonia under uncertainty. The Belief Rule-Based Inference Methodology using the Evidential Reasoning (RIMER) approach was adopted to develop this expert system, which is named the Belief Rule-Based Expert System (BRBES). The system can handle various types of uncertainty in knowledge representation and inference procedures. The knowledge base of this system was constructed by using real patient data and expert opinion. Practical case studies were used to validate the system. The system-generated results are more effective and reliable in terms of accuracy than from the results generated by a manual system.
Because of the increased popularity and fast expansion of the Internet as well as Internet of things, networks are growing rapidly in every corner of the society. As a result, huge amount of data is travelling across the computer networks that lead to the vulnerability of data integrity, confidentiality and reliability. So, network security is a burning issue to keep the integrity of systems and data. The traditional security guards such as firewalls with access control lists are not anymore enough to secure systems. To address the drawbacks of traditional Intrusion Detection Systems (IDSs), artificial intelligence and machine learning based models open up new opportunity to classify abnormal traffic as anomaly with a self-learning capability. Many supervised learning models have been adopted to detect anomaly from networks traffic. In quest to select a good learning model in terms of precision, recall, area under receiver operating curve, accuracy, F-score and model built time, this paper illustrates the performance comparison between Naïve Bayes, Multilayer Perceptron, J48, Naïve Bayes Tree, and Random Forest classification models. These models are trained and tested on three subsets of features derived from the original benchmark network intrusion detection dataset, NSL-KDD. The three subsets are derived by applying different attributes evaluator's algorithms. The simulation is carried out by using the WEKA data mining tool.
This paper prompts to understand the analysis by usingusecase diagram and design by relational model of a task management system for a banking system. A soundly design task manager may play an important role to keep track of all assign tasks, pending tasks, completed tasks, due tasks, and impossible to complete tasks. In addition, it will help to get an instant list of all tasks, promote tasks efficiency and watch against missed deadlines, Balance personal workloads, Forecast work bottlenecks and promote consumer satisfaction with regular suggested deadline dates. Before designing a task manager, the requirement analysis should be accomplished by interviewing the users or reviewing the current system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.