Multi-User (MU) Multiple-Input-Multiple-Output (MIMO) systems have been extensively investigated over the last few years from both theoretical and practical perspectives. The low complexity Linear Precoding (LP) schemes for MU-MIMO are already deployed in Long-Term Evolution (LTE) networks; however, they do not work well for users with strongly-correlated channels. Alternatives to those schemes, like Non-Linear Precoding (NLP), and hybrid precoding schemes were proposed in the standardization phase for the Third-Generation Partnership Project (3GPP) 5G New Radio (NR). NLP schemes have better performance, but their complexity is prohibitively high. Hybrid schemes, which combine LP schemes to serve users with separable channels and NLP schemes for users with strongly-correlated channels, can help reduce the computational burden, while limiting the performance degradation. Finding the optimum set of users that can be co-scheduled through LP schemes could require an exhaustive search and, thus, may not be affordable for practical systems. The purpose of this paper is to present a new semi-orthogonal user selection algorithm based on the statistical K-means clustering and to assess its performance in MU-MIMO systems employing hybrid precoding schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.