The influence of reactor wall conditions on the characteristics of high density fluorocarbon plasma etch processes has been studied. Results obtained during the etching of oxide, nitride, and silicon in an inductively coupled plasma source fed with various feedgases, such as CHF 3 , C 3 F 6 , and C 3 F 6 /H 2 , indicate that the reactor wall temperature is an important parameter in the etch process. Adequate temperature control can increase oxide etch selectivity over nitride and silicon. The loss of fluorocarbon species from the plasma to the walls is reduced as the wall temperature increased. The fluorocarbon deposition on a cooled substrate surface increases concomitantly, resulting in a more efficient suppression of silicon and nitride etch rates, whereas oxide etch rates remain nearly constant.
Laser focusing of Fe atoms offers the possibility of creating separate magnetic structures on a scale of 10 nm with exact periodicity. This can be done by using the parabolic minima of the potential generated by a standing light wave as focusing lenses. To achieve the desired 10-nm resolution, we need to suppress chromatic and spherical aberrations, as well as prevent structure broadening caused by the divergence of the incoming beam. Chromatic aberrations are suppressed by the development of a supersonic Fe beam source with speed ratio S ؍ 11 ؎ 1. This beam has an intensity of 3 ؋ 10 15 atoms sr ؊1 s ؊1 . The spherical aberrations of the standing light wave will be suppressed by aperturing with beam masks containing 100-nm slits at 744-nm intervals. The beam divergence can be reduced by application of laser cooling to reduce the transverse velocity. We have constructed a laser system capable of delivering over 500 mW of laser light at 372 nm, the wavelength of the 5 D4 3 5 F5 atomic transition of 56 Fe we intend to use for laser cooling. Application of polarization spectroscopy to a hollow cathode discharge results in a locking system holding the laser continuously within 2 MHz of the desired frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.