Gauss Legendre Quadrature rules are extremely accurate and they should be considered seriously when many integrals of similar nature are to be evaluated. This paper is concerned with the derivation and computation of numerical integration rules for the three integrals:which are dependent on the zeros and the squares of the zeros of Legendre Polynomial and is quite well known in the Gaussian Quadrature theory. We have developed the necessary MATLAB programs based on symbolic maths which can compute the sampling points and the weight coefficients and are reported here upto 32 -digits accuracy and we believe that they are reported to this accuracy for the first time. The MATLAB programs appended here are based on symbolic maths. They are very sophisticated and they can compute Quadrature rules of high order, whereas one of the recent MATLAB program appearing in reference [21] can compute Gauss Legendre Quadrature rules upto order twenty, because the zeros of Legendre polynomials cannot be computed to desired accuracy by MATLAB routine roots (……..). Whereas we have used the MATLAB routine solve (……..) to find zeros of polynomials which is very efficient. This is worth noting in the present context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.