The microbiota includes different microorganisms consisting of bacteria, fungi, viruses, and protozoa distributed over many human body surfaces including the skin, vagina, gut, and airways, with the highest density found in the intestine. The gut microbiota strongly influences our metabolic, endocrine, and immune systems, as well as both the peripheral and central nervous systems. Recently, a dialogue between the gut and lung microbiota has been discovered, suggesting that changes in one compartment could impact the other compartment, whether in relation to microbial composition or function. Further, this bidirectional axis is evidenced in an, either beneficial or malignant, altered immune response in one compartment following changes in the other compartment. Stimulation of the immune system arises from the microbial cells themselves, but also from their metabolites. It can be either direct or mediated by stimulated immune cells in one site impacting the other site. Additionally, this interaction may lead to immunological boost, assisting the innate immune system in its antitumour response. Thus, this review offers an insight into the composition of these sites, the gut and the lung, their role in shaping the immune system, and, finally, their role in the response to lung cancer.
We investigated the effects of betaine, C-phycocyanin (C-PC), and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50%) or C-PC treatment alone (no decrease). Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought.
Background:Several studies have confirmed the important role of the gut microbiota in the regulation of immune functions and its correlation with different diseases, including cancer. While brain-gut and liver-gut axes have already been demonstrated, the existence of a lung-gut axis has been suggested more recently, with the idea that changes in the gut microbiota could affect the lung microbiota, and vice versa. Likewise, the close connection between gut microbiota and cancer of proximal sites (intestines, kidneys, liver, etc.) is already well established. However, little is known whether there is a similar relation when looking at world's number one cause of death from cancer—lung cancer.Objective:Firstly, this study aims to characterise the gut, lung, and upper airways (UAs) microbiota in patients with non-small cell lung cancer (NSCLC) treated with surgery or neoadjuvant chemotherapy plus surgery. Secondly, it aims to evaluate a chemotherapy effect on site-specific microbiota and its influence on immune profile. To our knowledge, this is the 1st study that will analyse multi-site microbiota in NSCLC patients along with site-specific immune response.Methods:The study is a case-controlled observational trial. Forty NSCLC patients will be divided into 2 groups depending on their anamnesis: Pchir, patients eligible for surgery, or Pct-chir, patients eligible for neoadjuvant chemotherapy plus surgery. Composition of the UAs (saliva), gut (faeces), and lung microbiota (from broncho-alveolar lavage fluid (BALF) and 3 lung pieces: “healthy” tissue distal to tumour, peritumoural tissue and tumour itself) will be analysed in both groups. Immune properties will be evaluated on the local (evaluation of the tumour immune cell infiltrate, tumour classification and properties, immune cell phenotyping in BALF; human neutrophil protein (HNP) 1–3, β-defensin 2, and calprotectin in faeces) and systemic level (blood cytokine and immune cell profile). Short-chain fatty acids (SCFAs) (major products of bacterial fermentation with an effect on immune system) will be dosed in faecal samples. Other factors such as nutrition and smoking status will be recorded for each patient. We hypothesise that smoking status and tumour type/grade will be major factors influencing both microbiota and immune/inflammatory profile of all sampling sites. Furthermore, due to non-selectivity, the same effect is expected from chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.