Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
Dispersal has important ecological and evolutionary consequences for populations, but understanding the role of specific traits in dispersal can be difficult and requires careful experimentation. Moreover, understanding how humans alter dispersal is an important question, especially on oceanic islands where anthropogenic disturbance through species introductions can dramatically alter native ecosystems.
In this study, we investigated the functional role of spines in seed dispersal of the plant caltrop (Tribulus cistoides L., Zygophyllaceae) by anthropogenic dispersal agents. We also tested whether humans or wildlife are more important seed dispersers of T. cistoides on the Galápagos.
Tribulus cistoides is found on tropical mainland and oceanic island habitats. The dispersal structure of T. cistoides is called a mericarp, and they are typically protected by one pair of upper spines and a second pair of lower spines, but the presence and size of spines varies within and between populations. On the Galápagos, the upper and lower spines protect mericarps from seed predation by Darwin's finches. We tested whether spines play a dual role in dispersal by factorially manipulating the presence/absence of the upper and lower spines to simulate natural variation in mericarp morphology.
The upper spines greatly facilitated seed dispersal, whereas the lower spines had no discernible effect on dispersal. The presence of upper spines increased dispersal rate on shoes by pedestrians 23‐fold, on fabrics (e.g., towels) and cars by nearly twofold, and the presence of upper spines increased dispersal distance by cars sixfold. When comparing dispersal rates in habitats with high (roads and foot paths) versus low (arid forest) anthropogenic activity, dispersal rates were demonstrably higher in the habitats with more human activity.
These results have important implications for understanding the ecology and evolution of plant dispersal in the Anthropocene. Spines on the fruits of T. cistoides play important functional roles in anthropogenic dispersal, whereas native and introduced wildlife plays a minor role in dispersal on inhabited islands of the Galápagos. Our results imply that seed predators and humans are jointly shaping the ecology and evolution of contemporary populations of T. cistoides on the Galápagos.
Urbanization results in substantial changes to the environment.Urban habitats are typically warmer, more polluted, and more fragmented than nearby non-urban habitats, which can lead to changes in the abundance and persistence of populations, as well as altered diversity and community composition (
Emerging evidence has demonstrated that urbanization shapes the ecology and evolution of species interactions. Islands are particularly susceptible to urbanization due to the fragility of their ecosystems; however, few studies have examined the effects of urbanization on species interactions on islands. To address this gap, we studied the effects of urbanization on interactions between Darwin's finches and its food source, Tribulus cistoides, on three towns in the Galapagos Islands. We assessed the effects of urbanization on seed and mericarp removal from T. cistoides mericarps, mericarp morphology, and finch community composition using natural population surveys, experimental manipulations, and finch observations. We found that both seed and fruit removal rates differed between urban and non-urban populations in the natural and experimental populations, and that urbanization modified selection on mericarp size and defense. We found that urban environments also supported smaller and less diverse ground finch communities than non-urban environments. Together, our results suggest that urbanization can dramatically alter ecological interactions between Darwin's finches and T. cistoides, leading to modified selection on T. cistoides populations. This study demonstrates that urban development on islands can have profound effects on the ecology and evolution of trophic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.