Primary cilia are critical sensory and signaling compartments present on most mammalian cell types. These specialized structures require a unique signaling protein composition relative to the rest of the cell to carry out their functions. Defects in ciliary structure and signaling result in a broad group of disorders collectively known as ciliopathies. One ciliopathy, Bardet-Biedl Syndrome (BBS; OMIM 209900), presents with diverse clinical features, many of which are attributed to defects in ciliary signaling during both embryonic development and postnatal life. For example, patients exhibit obesity, polydactyly, hypogonadism, developmental delay, and skeletal abnormalities along with sensory and cognitive deficits, but for many of these phenotypes it is uncertain which are developmental in origin. A subset of BBS proteins assembles into the core BBSome complex, which is responsible for mediating transport of membrane proteins into and out of the cilium, establishing it as a sensory and signaling hub. Here we describe two new mouse models for BBS resulting from a targeted LacZ gene trap allele (Bbs5−/−) that is a predicted congenital null mutation and conditional (Bbs5flox/flox) allele of Bbs5. Bbs5−/− mice develop a complex phenotype consisting of increased preweaning lethality craniofacial and skeletal defects, ventriculomegaly, infertility, and pituitary anomalies. Utilizing the conditional allele, we show that the male fertility defects, ventriculomegaly, and pituitary abnormalities are only present when Bbs5 is disrupted prior to P7 indicating a developmental origin. In contrast, mutation of Bbs5 results in obesity independent of the age of Bbs5 loss.
Primary cilia are sensory and signaling hubs with a protein composition that is distinct from the rest of the cell due to the barrier function of the transition zone (TZ) at the base of the cilium. Protein transport across the TZ is mediated in part by the BBSome, and mutations disrupting TZ and BBSome proteins cause human ciliopathy syndromes. Ciliopathies have phenotypic variability even among patients with identical genetic variants, suggesting a role for modifier loci. To identify potential ciliopathy modifiers, we performed a mutagenesis screen on nphp-4 mutant Caenorhabditis elegans and uncovered a novel allele of bbs-5. Nphp-4;bbs-5 double mutant worms have phenotypes not observed in either individual mutant strain. To test whether this genetic interaction is conserved, we also analyzed zebrafish and mouse mutants. While Nphp4 mutant zebrafish appeared overtly normal, Bbs5 mutants exhibited scoliosis. When combined, Nphp4;Bbs5 double mutant zebrafish did not exhibit synergistic effects, but the lack of a phenotype in Nphp4 mutants makes interpreting these data difficult. In contrast, Nphp4;Bbs5 double mutant mice were not viable and there were fewer mice than expected carrying three mutant alleles. In addition, postnatal loss of Bbs5 in mice using a conditional allele compromised survival when combined with an Nphp4 allele. As cilia are still formed in the double mutant mice, the exacerbated phenotype is likely a consequence of disrupted ciliary signaling. Collectively, these data support an evolutionarily conserved genetic interaction between Bbs5 and Nphp4 alleles that may contribute to the variability in ciliopathy phenotypes.
Nodal-related protein (ndr2) is a member of the transforming growth factor type β superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forebrain development, and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced, and the remaining alleles were obtained via random insertion, gene targeting (TALEN), or unknown methods. Therefore, most mutation sites were random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptococcus pyogenes, we targeted distinct regions in all three exons of zebrafish ndr2 and observed cyclopia in the injected (G0) embryos. We show that the use of sgRNA-Cas9 ribonucleoprotein (RNP) complexes can cause penetrant cyclopic phenotypes in injected (G0) embryos. Targeted PCR amplicon analysis using Sanger sequencing showed that most of the alleles had small indels resulting in frameshifts. The sequence information correlates with the loss of ndr2 activity. In this study, we validate multiple CRISPR targets using an in vitro nuclease assay and in vivo analysis using embryos. We describe one specific mutant allele resulting in loss of conserved terminal cysteine-coding sequences. This study is another demonstration of the utility of the CRISPR-Cas9 system in generating domainspecific mutations and provides further insights into the structure-function of the ndr2 gene..
Nodal-related protein (ndr2) is a member of the transforming growth factor type β superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the zebrafish, Danio rerio, ndr2 gene lead to similar phenotypes, including loss of medial floor plate, severe deficits in ventral forebrain development, and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, eight of which are from chemical mutagenesis, four are radiationinduced, and the remaining alleles were obtained by random insertion, gene targeting (TALEN) or unknown. Therefore, most mutation sites were random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptococcus pyogenes, we targeted distinct regions in all three exons of ndr2 and observed cyclopia in the injected (G0) embryos. We show that the use of sgRNA-Cas9 ribonucleoprotein (RNP) complexes can cause penetrant cyclopic phenotypes in injected (G0) embryos. Targeted PCR amplicon analysis using Sanger sequencing showed that most of the alleles have small indels resulting in frameshifts. The sequence information correlates with the loss of ndr2 activity. In this study, we validate multiple CRISPR targets using an in vitro nuclease assay and in vivo analysis using embryos. We describe one specific mutant allele in detail that results in the loss of the conserved terminal cysteine coding sequences. This study is another demonstration of the utility of CRISPR-Cas9 system in generating domain-specific mutations and provides further insights into structure-function of ndr2 gene.
Although renal macrophages have been shown to contribute to cystic kidney disease in PKD animal models, it remains unclear if there is a specific macrophage subpopulation involved. Here we analyze changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We demonstrate that CD206+ resident macrophages are minimal in a normal adult kidney but accumulate in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and show this significantly reduces cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increases in kidneys and in the urine from ADPKD patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation and demonstrate that the CD206+ resident macrophages in urine may serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.