Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14ARF. Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies.
Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16Ink4a is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16Ink4a in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16Ink4a in beta cells induces hallmarks of senescence—including cell enlargement, and greater glucose uptake and mitochondrial activity—which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16Ink4a activity. We found that islets from human adults contain p16Ink4a-expressing senescent beta cells and that senescence induced by p16Ink4a in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16Ink4a and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.
Introduction: Testing for active SARS-CoV-2 infection is a fundamental tool in the public health measures taken to control the COVID-19 pandemic. Because of the overwhelming use of SARS-CoV-2 reverse transcription (RT)-PCR tests worldwide, the availability of test kits has become a major bottleneck and the need to increase testing throughput is rising. We aim to overcome these challenges by pooling samples together, and performing RNA extraction and RT-PCR in pools. Methods: We tested the efficiency and sensitivity of pooling strategies for RNA extraction and RT-PCR detection of SARS-CoV-2. We tested 184 samples both individually and in pools to estimate the effects of pooling. We further implemented Dorfman pooling with a pool size of eight samples in large-scale clinical tests. Results: We demonstrated pooling strategies that increase testing throughput while maintaining high sensitivity. A comparison of 184 samples tested individually and in pools of eight samples showed that test results were not significantly affected. Implementing the eight-sample Dorfman pooling to test 26 576 samples from asymptomatic individuals, we identified 31 (0.12%) SARS-CoV-2 positive samples, achieving a 7.3-fold increase in throughput. Discussion: Pooling approaches for SARS-CoV-2 testing allow a drastic increase in throughput while maintaining clinical sensitivity. We report the successful large-scale pooled screening of asymptomatic
BACKGROUND AIM Anemia is commonly associated with acute and chronic inflammation, but the mechanisms of their interaction are not clear. We investigated whether microRNA 122 (MIR122), which is generated in the liver and is secreted into the blood, is involved in the development of anemia associated with inflammation. METHODS We characterized the primary transcript of the human liverspecific MIR122 using northern blot, quantitative real-time PCR, and 3' and 5' RACE analyses. We studied regulation of MIR122 in human hepatocellular carcinoma (HCC) cell lines (Huh7 and HepG2) as well as in C57BL/6 and mice with disruption of the tumor necrosis factor gene (Tnf). Liver tissues were collected and analyzed by bioluminescence imaging or immunofluorescence. Inflammation in mice was induced by lipopolysaccharide (LPS) or by cerulein injections. Mice were given 4 successive injections of LPS, leading to inflammation-induced anemia. Steatohepatitis was induced with a choline-deficient high-fat diet. Hemolytic anemia was stimulated by phenylhydrazine injection. MIR122 was inhibited in mice by tail-vein injection of antogomiR-122 (an oligonucleotide antagonist of MIR122). MicroRNA and mRNA levels were determined by quantitative real time PCR. RESULTS The primary transcript of MIR122 spanned 5 kb, comprising 3 exons; the third encodes MIR122. Within the MIR122 promoter region we identified a nuclear factor-B (NF-B) binding site and demonstrated that RELA, as well as activators of NF-B (TNF and LPS), increased promoter activity of MIR122. Administration of LPS to mice induced secretion of MIR122 into blood, which required TNF. Secreted MIR122 reached the kidney and reduced expression of erythropoietin (Epo), which we identified as a MIR122 target gene. Injection of mice with antagomiR-122 increased blood levels of EPO, reticulocytes, and hemoglobin. We found an inverse relationship between blood levels of MIR122 and EPO in mice with acute pancreatitis or steatohepatitis, and also in patients with acute inflammation. CONCLUSION In mice, we found that LPS-induced inflammation increases blood levels of MIR122, which reduces expression of Epo in the kidney; this is a mechanism of inflammation-induced anemia. Strategies to block MIR122 in patients with inflammation could reduce the development or progression of anemia. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT AbstractBackground & Aim: Anemia is commonly associated with acute and chronic inflammation, but the mechanisms of their interaction are not clear. We investigated whether microRNA 122 (MIR122),...
Differentiation events contribute to phenotypic cellular heterogeneity within tumors and influence disease progression and response to therapy. Here, we dissect mechanisms controlling intratumoral heterogeneity within triple-negative basal-like breast cancers. Tumor cells expressing the cytokeratin K14 possess a differentiation state that is associated with that of normal luminal progenitors, and K14-negative cells are in a state closer to that of mature luminal cells. We show that cells can transition between these states through asymmetric divisions, which produce one K14 and one K14 daughter cell, and that these asymmetric divisions contribute to the generation of cellular heterogeneity. We identified several regulators that control the proportion of K14 cells in the population. EZH2 and Notch increase the numbers of K14 cells and their rates of symmetric divisions, and FOXA1 has an opposing effect. Our findings demonstrate that asymmetric divisions generate differentiation transitions and heterogeneity, and identify pathways that control breast cancer cellular composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.