BackgroundPatients diagnosed with metastatic cancer have almost uniformly poor prognoses. The treatments available for patients with disseminated disease are usually not curative and have side effects that limit the therapy that can be given. A treatment that is selectively toxic to tumors would maximize the beneficial effects of therapy and minimize side effects, potentially enabling effective treatment to be administered.Methods and FindingsWe postulated that the tumor-tropic property of stem cells or progenitor cells could be exploited to selectively deliver a therapeutic gene to metastatic solid tumors, and that expression of an appropriate transgene at tumor loci might mediate cures of metastatic disease. To test this hypothesis, we injected HB1.F3.C1 cells transduced to express an enzyme that efficiently activates the anti-cancer prodrug CPT-11 intravenously into mice bearing disseminated neuroblastoma tumors. The HB1.F3.C1 cells migrated selectively to tumor sites regardless of the size or anatomical location of the tumors. Mice were then treated systemically with CPT-11, and the efficacy of treatment was monitored. Mice treated with the combination of HB1.F3.C1 cells expressing the CPT-11-activating enzyme and this prodrug produced tumor-free survival of 100% of the mice for >6 months (P<0.001 compared to control groups).ConclusionsThe novel and significant finding of this study is that it may be possible to exploit the tumor-tropic property of stem or progenitor cells to mediate effective, tumor-selective therapy for metastatic tumors, for which no tolerated curative treatments are currently available.
Neural stem cells and progenitor cells migrate selectively to tumor loci in vivo. We exploited the tumor-tropic properties of HB1.F3.C1 cells, an immortalized cell line derived from human fetal telencephalon, to deliver the cDNA encoding a secreted form of rabbit carboxylesterase (rCE) to disseminated neuroblastoma tumors in mice. This enzyme activates the prodrug CPT-11 more efficiently than do human enzymes. Mice bearing multiple tumors were treated with rCE-expressing HB1.F3.C1 cells and schedules of administration of CPT-11 that produced levels of active drug (SN-38) tolerated by patients. Both HB1.F3.C1 cells and CPT-11 were given i.v. None of the untreated mice and 30% of mice that received only CPT-11 survived long term. In contrast, 90% of mice treated with rCE-expressing HB1.F3.C1 cells and 15 mg/kg CPT-11 survived for 1 year without detectable tumors. Plasma carboxylesterase activity and SN-38 levels in mice receiving both rCE-expressing HB1.F3.C1 cells (HB1.F3.C1/AdCMVrCE) and CPT-11 were comparable with those in mice receiving CPT-11 only. These data support the hypothesis that the antitumor effect of the described neural stem/progenitor cell-directed enzyme prodrug therapy (NDEPT) is mediated by production of high concentrations of active drug selectively at tumor sites, thereby maximizing the antitumor effect of CPT-11. NDEPT approaches merit further investigation as effective, targeted therapy for metastatic tumors. We propose that the described approach may have greatest use for eradicating minimum residual disease. [Cancer Res 2007;67(1):22-5]
The actin cytoskeleton is a primary determinant of tumor cell motility and metastatic potential. Motility and metastasis are thought to be regulated, in large part, by the interaction of membrane proteins with cytoplasmic linker proteins and of these linker proteins, in turn, with actin. However, complete membrane-to-actin linkages have been difficult to identify. We used co-immunoprecipitation and competitive peptide assays to show that intercellular adhesion molecule-2 (ICAM-2)/α-actinin/actin may comprise such a linkage in neuroblastoma cells. ICAM-2 expression limited the motility of these cells and redistributed actin fibers in vitro, and suppressed development of disseminated tumors in an in vivo model of metastatic neuroblastoma. Consistent with these observations, immunohistochemical analysis demonstrated ICAM-2 expression in primary neuroblastoma tumors exhibiting features that are associated with limited metastatic disease and more favorable clinical outcome. In neuroblastoma cell lines, ICAM-2 expression did not affect AKT activation, tumorigenic potential or chemosensitivity, as has been reported for some types of transfected cells. The observed ICAM-2-mediated suppression of metastatic phenotype is a novel function for this protein, and the interaction of ICAM-2/α-actinin/actin represents the first complete membrane-linker protein-actin linkage to impact tumor cell motility in vitro and metastatic potential in an in vivo model. Current work focuses on identifying specific protein domains critical to the regulation of neuroblastoma cell motility and metastasis and on determining if these domains represent exploitable therapeutic targets.
Purpose-Osteoprotegerin (OPG) inhibits osteoclast activation and reduces osteolysis in bone tumors. We hypothesized that tumor-tropic neural progenitor cells (NPCs) engineered to express OPG would reduce neuroblastoma disease burden in the bone.Methods-Stable expression of green fluorescent protein (NPC-GFP) and OPG (NPC-OPG) was established in human NPCs by lentivirus-mediated transduction. Bone disease was established by intrafemoral injection of luciferase-expressing human neuroblastoma (CHLA-255) cells into 20 SCID mice. Three weeks later, mice began receiving IV injection of 2×10 6 NPC-OPG or NPC-GFP (control) every 10 days × 3 doses. Disease was monitored with quantitative bioluminescent imaging (BLI) and X-ray images, which were evaluated on a scale of 0 to 4. These studies were IACUC approved.Results-OPG treatment in vitro produced no direct toxicity to tumor cells. Co-culture of tumor cells with bone marrow significantly increased activation of bone-marrow derived osteoclasts as assessed by TRAP staining (156±10.8osteoclasts/well) compared to bone marrow culture alone (91.67±4.7, p=0.005). This increase was abrogated by adding OPG-containing media (68.3±2.8, p=0.001). NPC-OPG slowed tumor progression (108-fold increase from pre-treatment) compared to mice treated with NPC-GFP (538-fold), as judged by BLI. X-rays subjectively demonstrated less bone disease in NPC-OPG-treated mice (2.27±0.25) compared to NPC-GFP-treated mice (3.25±0.22, p=0.04). Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Conclusions-NPC-mediated delivery of OPG slowed disease progression in a pre-clinical model of neuroblastoma bone metastasis. The decrease in bone disease was not from direct tumor cell toxicity but likely occurred indirectly through inhibition of osteoclast-directed bone resorption. Thus, targeted delivery of OPG by NPCs may be effective in the treatment of neuroblastoma bone metastasis. NIH Public Access
Background-We have shown that continuous, systemic delivery of interferon-β (IFN-β) remodels dysfunctional tumor vasculature, thereby improving tumor perfusion and enhancing delivery and efficacy of chemotherapeutic drugs. We hypothesized that because of their inherent tumor-tropism, neural progenitor cells (NPCs) engineered to express IFN-β could also effect maturation of tumor vasculature without generating high systemic levels of IFN-β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.