Microtubule-associated protein 2 (MAP2) is the predominant cytoskeletal regulator within neuronal dendrites, abundant and specific enough to serve as a robust somatodendritic marker. It influences microtubule dynamics and microtubule/actin interactions to control neurite outgrowth and synaptic functions, similarly to the closely related MAP Tau. Though pathology of Tau has been well appreciated in the context of neurodegenerative disorders, the consequences of pathologically dysregulated MAP2 have been little explored, despite alterations in its immunoreactivity, expression, splicing and/or stability being observed in a variety of neurodegenerative and neuropsychiatric disorders including Huntington's disease, prion disease, schizophrenia, autism, major depression and bipolar disorder. Here we review the understood structure and functions of MAP2, including in neurite outgrowth, synaptic plasticity, and regulation of protein folding/transport. We also describe known and potential mechanisms by which MAP2 can be regulated via post-translational modification. Then, we assess existing evidence of its dysregulation in various brain disorders, including from immunohistochemical and (phospho) proteomic data. We propose pathways by which MAP2 pathology could contribute to endophenotypes which characterize these disorders, giving rise to the concept of a "MAP2opathy"-a series of disorders characterized by alterations in MAP2 function.
Several postmortem studies have reported lower levels of immunoreactivity (IR) for microtubule-associated protein 2 (MAP2) in several cortical regions of individuals with schizophrenia (SZ). However, whether this effect is conserved across multiple brain areas within an individual with SZ or if it is regionally-specific remains unclear. We characterized patterns of MAP2-IR across three cortical regions at different levels of the rostral-caudal axis within individual subjects with and without SZ. MAP2-IR levels were measured in deep layer 3 of dorsolateral prefrontal cortex (DLPFC), lateral intraparietal cortex (LIP), and primary visual cortex (V1). Postmortem tissue containing each cortical region was derived from 20 pairs of SZ subjects and nonpsychiatric comparison (NPC) subjects matched perfectly for sex, and as closely as possible for age and postmortem interval. MAP2-IR was assessed by quantitative fluorescence microscopy. We observed significantly lower levels of MAP2-IR in SZ subjects relative to NPC subjects, without a significant region by diagnosis interaction. Logs of the within-pair ratios (SZ:NPC) of MAP2-IR were significantly correlated across the three regions. These findings demonstrate that MAP2-IR deficits in SZ are consistent across three neocortical regions within individual subjects. This pattern of MAP2-IR deficit has implications for therapeutic development and future investigations of MAP2 pathology in SZ.
The voltage-gated calcium channel (VGCC) subunit complex is comprised of the α1 subunit, the ion permeable channel, and three auxiliary subunits: β, α2δ and γ. β is the most extensively studied auxiliary subunit and is necessary for forward trafficking of the α1 subunit to the plasma membrane. VGCCs mediate voltage-dependent movement of calcium ions into neuronal cytoplasm, including at dendrites, where intracellular calcium spikes initiate signaling cascades that shape the structural plasticity of dendritic spines. Genetic studies strongly implicate calcium signaling dysfunction in the etiology of neurodevelopmental disorders including schizophrenia. Dendritic spine density is significantly decreased in schizophrenia in primary auditory cortex where it is driven by loss of small spines, and small spine loss associated with increased peptide levels of ALFDFLK found in the VGCC β subunit β4. Overexpessing CACNB4 selectively reduced small spine density in cortical neuron cultures. We set out to validate this observation in an intact mammalian system within the relevant neurodevelopmental context. We overexpressed CACNB4 in early development and assessed spine density and morphology in adult male and female mouse cortex. We characterized β1–4 protein levels and β4 protein-protein interactions. Overexpression selectively reduced small spine density in female mice. This effect was not dependent on estrous stage. Instead it corresponded to sex differences in the murine β4 interactome. The VGCC subunit β1b was significantly enriched in the β4 interactome of male relative to female mice, and thus may have served to mitigate VGCC overexpression-mediated spine loss in male mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.