HLTF participates in transcription, chromatin remodeling, DNA damage repair, and tumor suppression. Aside from being expressed in mouse brain during embryonic and postnatal development, little is known about Hltf's functional importance. Splice variant quantification of wild-type neonatal (6-8 hour postpartum) brain gave a ratio of 5:1 for Hltf isoform 1 (exons 1-25) to isoform 2 (exons 1-21 with exon 21 extended via a partial intron retention event). Western analysis showed a close correlation between mRNA and protein expression. Complete loss of Hltf caused encephalomalacia with increased apoptosis, and reduced viability. Sixty-four percent of Hltf null mice died, 48% within 12-24 hours of birth. An RNA-Seq snapshot of the neonatal brain transcriptome showed 341 of 20,000 transcripts were altered (p < 0.05) - 95 up regulated and 246 down regulated. MetaCoreTM enrichment pathway analysis revealed Hltf regulates cell cycle, cell adhesion, and TGF-beta receptor signaling. Hltf's most important role is in the G2/M transition of the cell cycle (p = 4.672e-7) with an emphasis on transcript availability of major components in chromosome cohesion and condensation. Hltf null brains have reduced transcript levels for Rad21/Scc1, histone H3.3, Cap-E/Smc2, Cap-G/G2, and Aurora B kinase. The loss of Hltf in its yeast Rad5-like role in DNA damage repair is accompanied by down regulation of Cflar, a critical inhibitor of TNFRSF6-mediated apoptosis, and increased (p<0.0001) active caspase-3, an indicator of intrinsic triggering of apoptosis in null brains. Hltf also regulates Smad7/Bambi/Tgf-beta/Bmp5/Wnt10b signaling in brain. ChIP confirmed Hltf binding to consensus sequences in predicted (promoter Scgb3a1 gene) and previously unidentified (P-element on chromosome 7) targets. This study is the first to provide a comprehensive view of Hltf targets in brain. Moreover, it reveals how silencing Hltf disrupts cell cycle progression, and attenuates DNA damage repair.
HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum) brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05) - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf’s regulation of the G2/M transition (p=9.726E-15) of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2) and lysyl (Plod2) collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3) for collagen trimerization, and lysyl oxidase (Loxl2) for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps) was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and fragmented. Thus, silencing Hltf during heart organogenesis compromised DNA double-strand break repair, and caused aberrant collagen biogenesis altering the structural network that transmits cardiomyocyte force into muscle contraction.
Hltf is regulated by intron retention, and global Hltf-deletion causes perinatal lethality from hypoglycemia. In heart, full-length Hltf is a transcriptional regulator of Hif-1α that controls transport systems. Thus, we tested the hypothesis that Hltf deletion from placenta caused or exacerbated neonatal hypoglycemia via Hif-1α regulation of nutrient transporters. RNA-seq data analyses identified significant changes in transcript expression and alternative splicing (AS) in E18.5 placentome. iPathwayGuide was used for gene ontology (GO) analysis of biological processes, molecular functions and cellular components. Elim pruning algorithm identified hierarchical relationships. The methylome was interrogated by Methyl-MiniSeq Epiquest analysis. GO analysis identified gene enrichment within biological processes. Protein expression was visualized with immunohistochemistry. Although two Hltf mRNA isoforms are quantifiable in most murine tissues, only the truncated Hltf isoform is expressed in placenta. The responsible intron retention event occurs in the absence of DNA methylation. iPathwayGuide analysis identified 157 target genes of 11,538 total genes with measured expression. These were obtained using a threshold of 0.05 for statistical significance (p-value) and a long fold change of expression with absolute value of at least 0.6. Hltf deletion altered transcription of trophoblast lineage-specific genes, and increased transcription of the Cxcr7 (p = 0.004) gene whose protein product is a co-receptor for human and simian immunodeficiency viruses. Concomitant increased Cxcr7 protein was identified with immunolabeling. Hltf deletion had no effect on transcription or site-specific methylation patterns of Hif-1α, the major glucose transporters, or System A amino acid transporters. There was no measureable evidence of uteroplacental dysfunction or fetal compromise. iPathGuide analysis revealed Hltf suppresses cytolysis (10/21 genes; p-value 1.900e-12; p-value correction: Elim pruning; GO:019835) including the perforin-granzyme pathway in uterine natural killer cells. Our findings 1) prove the truncated Hltf protein isoform is a transcription factor, 2) establish a functional link between AS of Hltf and immunosuppression at the feto-maternal interface, 3) correlate intron retention with the absence of DNA methylation, and 4) underscore the importance of differential splicing analysis to identify Hltf’s functional diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.