RNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences. RdDM, which transcriptionally represses a subset of transposons and genes, is implicated in pathogen defence, stress responses and reproduction, as well as in interallelic and intercellular communication.
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
The fission yeast clade, comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus and S. japonicus, occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, suggesting a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.
Most eukaryotes produce small RNA (sRNA) mediators of gene silencing that bind to Argonaute proteins and guide them, by base pairing, to an RNA target. MicroRNAs (miRNAs) that normally target messenger RNAs for degradation or translational arrest are the best-understood class of sRNAs. However, in Arabidopsis thaliana flowers, miRNAs account for only 5% of the sRNA mass and less than 0.1% of the sequence complexity. The remaining sRNAs form a complex population of more than 100,000 different small interfering RNAs (siRNAs) transcribed from thousands of loci. The biogenesis of most of the siRNAs in Arabidopsis are dependent on RNA polymerase IV (PolIV), a homologue of DNA-dependent RNA polymerase II. A subset of these PolIV-dependent (p4)-siRNAs are involved in stress responses, and others are associated with epigenetic modifications to DNA or chromatin; however, the biological role is not known for most of them. Here we show that the predominant phase of p4-siRNA accumulation is initiated in the maternal gametophyte and continues during seed development. Expression of p4-siRNAs in developing endosperm is specifically from maternal chromosomes. Our results provide the first evidence for a link between genomic imprinting and RNA silencing in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.