Background Carbon dioxide (CO2) inhalation, a biological challenge and pathological marker in Panic Disorder, evokes intense fear and panic attacks in susceptible individuals. The molecular identity and anatomical location of CO2-sensing systems that translate CO2-evoked fear remains unclear. We investigated contributions of microglial acid sensor T cell death associated gene-8 (TDAG8) and microglial pro-inflammatory responses in CO2-evoked behavioral and physiological responses. Methods CO2-evoked freezing, autonomic and respiratory responses were assessed in TDAG8-deficient (−/−) and wildtype (+/+) mice. Involvement of TDAG8-dependent microglial activation and pro-inflammatory cytokine IL-1β with CO2-evoked responses was investigated using microglial blocker, minocycline and IL-1β antagonist, IL- 1RA. CO2-chemosensitive firing responses using single-cell patch clamping were measured in TDAG8−/− and +/+ mice to gain functional insights. Results; TDAG8 expression was localized in microglia enriched within the sensory circumventricular organs (CVOs). TDAG8−/− mice displayed attenuated CO2-evoked freezing and sympathetic responses. TDAG8 deficiency was associated with reduced microglial activation and pro-inflammatory cytokine, IL-1β within the subfornical organ (SFO). Central infusion of microglial activation blocker, minocycline and IL-1β antagonist, IL-1RA attenuated CO2-evoked freezing. Finally, CO2-evoked neuronal firing in patch clamped SFO neurons was dependent on acid sensor TDAG8 and IL-1β. Conclusions Our data identify TDAG8-dependent microglial acid-sensing as a unique chemosensor for detecting and translating hypercapnia to fear-associated behavioral and physiological responses, providing a novel mechanism for homeostatic threat detection of relevance to psychiatric conditions such as panic disorder.
Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation.
The NMDA glutamate hypofunction model of schizophrenia is based in part upon acute effects of NMDA receptor blockade in humans and rodents. Several laboratories have reported glutamate system abnormalities following prenatal exposure to immune challenge, a known environmental risk factor for schizophrenia. Here we report indices of NMDA glutamate receptor hypofunction following prenatal immune activation, as well as the effects of treatment during periadolescence with the atypical antipsychotic medications risperidone and paliperidone. Pregnant Sprague-Dawley rats were injected with polyinosinic:polycytidylic acid (poly I:C) or saline on gestational day 14. Male offspring were treated orally via drinking water with vehicle, risperidone (0.01 mg/kg/day), or paliperidone (0.01 mg/kg/day) between postnatal days 35 and 56 (periadolescence) and extracellular glutamate levels in the prefrontal cortex were determined by microdialysis at PD 56. Consistent with decreased NMDA receptor function, MK-801 – induced increases in extracellular glutamate concentration were markedly blunted following prenatal immune activation. Further suggesting NMDA receptor hypofunction, prefrontal cortex basal extracellular glutamate was significantly elevated (P<0.05) in offspring of Poly I:C treated dams. Pretreatment with low dose paliperidone or risperidone (0.01 mg/kg/day postnatal days 35–56) normalized prefrontal cortical basal extracellular glutamate (P<0.05 vs. poly I:C vehicle-treatment). Pretreatment with paliperidone and risperidone also prevented the acute MK-801-induced increase in extracellular glutamate. These observations demonstrate decreased NMDA receptor function and elevated extracellular glutamate, two key features of the NMDA glutamate receptor hypofunction model of schizophrenia, during periadolescence following prenatal immune activation. Treatment with the atypical antipsychotic medications paliperidone and risperidone normalized basal extracellular glutamate. Demonstration of glutamatergic abnormalities consistent with the NMDA glutamate receptor hypofunction model of schizophrenia as an early developmental consequence of prenatal immune activation provides a model to identify novel early interventions targeting glutamatergic systems which play an important role in both positive and negative symptoms of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.