This prospective, open-label, non-randomized trial at the University Departments of Infectious Diseases in Ljubljana, Slovenia, and Göteborg, Sweden, was conducted to compare the kinetics of the cerebrospinal fluid (CSF) mononuclear cell count after 10-14 d of ceftriaxone or doxycycline for treatment of Lyme neuroborreliosis. 29 patients were treated with intravenous ceftriaxone 2 g daily in Ljubljana and 36 patients with oral doxycycline 400 mg daily in Göteborg. The study protocol included lumbar puncture before and 6-8 weeks after treatment initiation. There was a marked decrease (1.2 log10 x 10(6)/l) of the median CSF mononuclear cell count following treatment. With the assumption of a linear regression of the logarithmic mononuclear cell counts between the 2 lumbar punctures, no significant difference between the 2 antibiotic treatments could be found. All patients were clinically much improved after treatment. At 6 months follow-up 23 (79%) of the ceftriaxone- and 26 (72%) of the doxycycline-treated patients were completely recovered. Intravenous ceftriaxone or oral doxycycline was found to be effective, safe, and convenient for treatment of Lyme neuroborreliosis.
The Spinal Muscular Atrophy disease protein Survival Motor Neuron (SMN) operates as part of a multiprotein complex whose components also include Gemins 2-8 and Unrip. The fruit fly Drosophila melanogaster is thought to have a slightly smaller SMN complex comprised of SMN, Gemin2/3/5 and, possibly, Unrip. Based upon in vivo interaction methods, we have identified novel interacting partners of the Drosophila SMN complex with homologies to Gemin4/6/7/8. The Gemin4 and Gemin8 orthologues are required for neuromuscular function and survival. The Gemin6/7/Unrip module can be recruited via the SMN-associated Gemin8, hence mirroring the human SMN complex architecture. Our findings lead us to propose that an elaborate SMN complex that is typical in metazoans is also present in Drosophila.
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2–8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3ΔN mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3ΔN overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3ΔN, we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3ΔN-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3ΔN. Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.