Normothermic ex situ liver perfusion might allow viability assessment of livers before transplantation. Perfusion characteristics were studied in 47 liver perfusions, of which 22 resulted in transplants. Hepatocellular damage was reflected in the perfusate transaminase concentrations, which correlated with posttransplant peak transaminase levels. Lactate clearance occurred within 3 hours in 46 of 47 perfusions, and glucose rose initially during perfusion in 44. Three livers required higher levels of bicarbonate support to maintain physiological pH, including one developing primary nonfunction. Bile production did not correlate with viability or cholangiopathy, but bile pH, measured in 16 of the 22 transplanted livers, identified three livers that developed cholangiopathy (peak pH < 7.4) from those that did not (pH > 7.5). In the 11 research livers where it could be studied, bile pH > 7.5 discriminated between the 6 livers exhibiting >50% circumferential stromal necrosis of septal bile ducts and 4 without necrosis; one liver with 25‐50% necrosis had a maximum pH 7.46. Liver viability during normothermic perfusion can be assessed using a combination of transaminase release, glucose metabolism, lactate clearance, and maintenance of acid‐base balance. Evaluation of bile pH may offer a valuable insight into bile duct integrity and risk of posttransplant ischemic cholangiopathy.
BackgroundA program of normothermic ex situ liver perfusion (NESLiP) was developed to facilitate better assessment and use of marginal livers, while minimizing cold ischemia.MethodsDeclined marginal livers and those offered for research were evaluated. Normothermic ex situ liver perfusion was performed using an erythrocyte-based perfusate. Viability was assessed with reference to biochemical changes in the perfusate.ResultsTwelve livers (9 donation after circulatory death [DCD] and 3 from brain-dead donors), median Donor Risk Index 2.15, were subjected to NESLiP for a median 284 minutes (range, 122-530 minutes) after an initial cold storage period of 427 minutes (range, 222-877 minutes). The first 6 livers were perfused at high perfusate oxygen tensions, and the subsequent 6 at near-physiologic oxygen tensions. After transplantation, 5 of the first 6 recipients developed postreperfusion syndrome and 4 had sustained vasoplegia; 1 recipient experienced primary nonfunction in conjunction with a difficult explant. The subsequent 6 liver transplants, with livers perfused at lower oxygen tensions, reperfused uneventfully. Three DCD liver recipients developed cholangiopathy, and this was associated with an inability to produce an alkali bile during NESLiP.ConclusionsNormothermic ex situ liver perfusion enabled assessment and transplantation of 12 livers that may otherwise not have been used. Avoidance of hyperoxia during perfusion may prevent postreperfusion syndrome and vasoplegia, and monitoring biliary pH, rather than absolute bile production, may be important in determining the likelihood of posttransplant cholangiopathy. Normothermic ex situ liver perfusion has the potential to increase liver utilization, but more work is required to define factors predicting good outcomes.
Inhibition of the chemokine receptor CXCR4 in combination with blockade of the PD-1/PD-L1 T cell checkpoint induces T cell infiltration and anticancer responses in murine and human pancreatic cancer. Here we elucidate the mechanism by which CXCR4 inhibition affects the tumor immune microenvironment. In human immune cell-based chemotaxis assays, we find that CXCL12-stimulated CXCR4 inhibits the directed migration mediated by CXCR1, CXCR3, CXCR5, CXCR6, and CCR2, respectively, chemokine receptors expressed by all of the immune cell types that participate in an integrated immune response. Inhibiting CXCR4 in an experimental cancer medicine study by 1-wk continuous infusion of the small-molecule inhibitor AMD3100 (plerixafor) induces an integrated immune response that is detected by transcriptional analysis of paired biopsies of metastases from patients with microsatellite stable colorectal and pancreatic cancer. This integrated immune response occurs in three other examples of immune-mediated damage to noninfected tissues: Rejecting renal allografts, melanomas clinically responding to anti-PD1 antibody therapy, and microsatellite instable colorectal cancers. Thus, signaling by CXCR4 causes immune suppression in human pancreatic ductal adenocarcinoma and colorectal cancer by impairing the function of the chemokine receptors that mediate the intratumoral accumulation of immune cells.
IntroductionHepatotoxicity from T-cell checkpoint blockade is an increasingly common immune-related adverse event, but remains poorly characterised and can be challenging to manage. Such toxicity is generally considered to resemble autoimmune hepatitis, although this assumption is extrapolated from limited clinicopathological reports of anti-cytotoxic T-lymphocyte-associated protein 4-induced hepatotoxicity.MethodsHere we report, with full clinicopathological correlation, three cases of T-cell checkpoint inhibitor-induced hepatotoxicity associated with anti-programmed cell death protein 1 agents.ResultsWe find that a major feature of these cases is biliary injury, including a unique case of vanishing bile duct syndrome, and that such toxicity was poorly responsive to long-term immunosuppression (corticosteroids and mycophenolate mofetil). Any potential benefits of long-term immunosuppression in these cases were outweighed by therapy-related complications.DiscussionWe discuss potential aetiologies and risk factors for immune-mediated biliary toxicity in the context of the limited literature in this field, and provide guidance for the investigation and supportive management of affected patients.
Ischemia/reperfusion injury (IRI) that develops after liver implantation may prejudice long-term graft survival, but it remains poorly understood. Here we correlate the severity of IRIs that were determined by histological grading of time-zero biopsies sampled after graft revascularization with patient and graft outcomes. Time-zero biopsies of 476 liver transplants performed at our center between 2000 and 2010 were graded as follows: nil (10.5%), mild (58.8%), moderate (26.1%), and severe (4.6%). Severe IRI was associated with donor age, donation after circulatory death, prolonged cold ischemia time, and liver steatosis, but it was also associated with increased rates of primary nonfunction (9.1%) and retransplantation within 90 days (22.7%). Longer term outcomes in the severe IRI group were also poor, with 1-year graft and patient survival rates of only 55% and 68%, respectively (cf. 90% and 93% for the remainder). Severe IRI on the time-zero biopsy was, in a multivariate analysis, an independent determinant of 1-year graft survival and was a better predictor of 1-year graft loss than liver steatosis, early graft dysfunction syndrome, and high first-week alanine aminotransferase with a positive predictive value of 45%. Time-zero biopsies predict adverse clinical outcomes after liver transplantation, and severe IRI upon biopsy signals the likely need for early retransplantation. Liver Transpl 21:487-499, 2015. V C 2015 AASLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.