BackgroundMusic listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response.MethodsSixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters.ResultsThe three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups.ConclusionOur findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the beneficial effects of music on the human body.
A set of ten C1‐symmetric chiral bicyclo[2.2.2]octa‐2,5‐dienes (bod*) 2 (Fig. 1) were tested as ligands in Rh‐catalyzed arylation reactions. The 1,4‐addition of arylboronic acids to cyclohex‐2‐en‐1‐one, cyclopent‐2‐en‐1‐one, and tert‐butyl cinnamate proceeded smoothly with excellent enantioselectivities (up to 99% ee; Tables 1–3). The challenging 1,2‐addition of triphenylboroxine to N‐[(4‐nitrophenyl)sulfonyl]imines yielded the product in high yield and in good enantioselectivity (up to 92% ee; Table 4). Generally, the use of C1‐symmetric chiral bod* ligands bearing bulky substituents resulted in lower enantioselectivities, whereas several electron‐poor and electron‐rich bod* ligands gave higher enantioselectivities than the benchmark ligands reported in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.