When studying the evolutionary relationships among a set of species, the principle of parsimony states that a relationship involving the fewest number of evolutionary events is likely the correct one. Due to its simplicity, this principle was formalized in the context of computational evolutionary biology decades ago by, e.g., Fitch and Sankoff. Because the parsimony framework does not require a model of evolution, unlike maximum likelihood or Bayesian approaches, it is often a good starting point when no reasonable estimate of such a model is available. In this work, we devise a method for detecting correlated evolution among pairs of discrete characters, given a set of species on these characters, and an evolutionary tree. The first step of this method is to use Sankoff's algorithm to compute all most parsimonious assignments of ancestral states (of each character) to the internal nodes of the phylogeny. Correlation between a pair of evolutionary events (e.g., absent to present) for a pair of characters is then determined by the (co-) occurrence patterns between the sets of their respective ancestral assignments. We implement this method: parcours (PARsimonious CO-occURrenceS) and use it to study the correlated evolution among vocalizations and morphological characters in the Felidae family, revealing some interesting results.
When studying the evolutionary relationship between a set of species, the principle of parsimony states that a relationship involving the fewest number of evolutionary events is likely the correct one. Due to its simplicity, this principle was formalized in the context of computational evolutionary biology decades ago by, e.g., Fitch and Sankoff. Because the parsimony framework does not require a model of evolution, unlike maximum likelihood or Bayesian approaches, it is often a good starting point when no reasonable estimate of such a model is available.In this work, we devise a method for detecting correlated evolution among pairs of discrete characters, given a set of species on these characters, and an evolutionary tree. The first step of this method is to use Sankoff’s algorithm to compute all most parsimonious assignments of ancestral states (of each character) to the internal nodes of the phylogeny. Correlation between a pair of evolutionary events (e.g., absent to present) for a pair of characters is then determined by their (co-) occurrence patterns among their respective ancestral assignments. We implement this method: parcours (PARsimonious CO-occURrenceS) and use it to study the correlated evolution among vocalizations in the Felidae family, revealing some interesting results.The parcours tool is freely available at https://github.com/murraypatterson/parcours
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.