BackgroundThis manuscript summarizes consensus reached by the International Anorectal Physiology Working Group (IAPWG) for the performance, terminology used, and interpretation of anorectal function testing including anorectal manometry (focused on high‐resolution manometry), the rectal sensory test, and the balloon expulsion test. Based on these measurements, a classification system for disorders of anorectal function is proposed.MethodsTwenty‐nine working group members (clinicians/academics in the field of gastroenterology, coloproctology, and gastrointestinal physiology) were invited to six face‐to‐face and three remote meetings to derive consensus between 2014 and 2018.Key recommendationsThe IAPWG protocol for the performance of anorectal function testing recommends a standardized sequence of maneuvers to test rectoanal reflexes, anal tone and contractility, rectoanal coordination, and rectal sensation. Major findings not seen in healthy controls defined by the classification are as follows: rectoanal areflexia, anal hypotension and hypocontractility, rectal hyposensitivity, and hypersensitivity. Minor and inconclusive findings that can be present in health and require additional information prior to diagnosis include anal hypertension and dyssynergia.Conclusions and InferencesThis framework introduces the IAPWG protocol and the London classification for disorders of anorectal function based on objective physiological measurement. The use of a common language to describe results of diagnostic tests, standard operating procedures, and a consensus classification system is designed to bring much‐needed standardization to these techniques.
Ingestible sensors are potentially a powerful tool for monitoring human health. Sensors have been developed that can, for example, provide pH and pressure readings or monitor medication, but capsules that can provide key information about the chemical composition of the gut are still not available. Here we report a human pilot trial of an ingestible electronic capsule that can sense oxygen, hydrogen, and carbon dioxide. The capsule uses a combination of thermal conductivity and semiconducting sensors, and their selectivity and sensitivity to different gases is controlled by adjusting the heating elements of the sensors. Gas profiles of the subjects were obtained while modulating gut microbial fermentative activities by altering their intake of dietary fibre. Ultrasound imaging confirmed that the oxygen-equivalent concentration profile could be used as an accurate marker for the location of the capsule. In a crossover study, variations of fibre intake were found to be associated with differing small intestinal and colonic transit times, and gut fermentation. Regional fermentation patterns could be defined via hydrogen gas profiles. Our gas capsule offers an accurate and safe tool for monitoring the effects of diet of individuals, and has the potential to be used as a diagnostic tool for the gut.
NATuRE ELECTRONiCS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.