The NLRP3 inflammasome is a component of the inflammatory process and its aberrant activation is pathogenic in inherited disorders such as the cryopyrin associated periodic syndromes (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes and atherosclerosis. We describe the development of MCC950, a potent, selective, small molecule inhibitor of NLRP3. MCC950 blocks canonical and non-canonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibits NLRP3 but not AIM2, NLRC4 or NLRP1 activation. MCC950 reduces Interleukin-1p (IL-1β) production in vivo and attenuates the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescues neonatal lethality in a mouse model of CAPS and is active in ex vivo samples from individuals with Muckle-Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for the further study of the NLRP3 inflammasome in human health and disease.
IL-1β is an important inflammatory mediator of type 2 diabetes (T2D). Here we show that oligomers of islet amyloid polypeptide (IAPP), a protein that forms amyloid deposits in the pancreas during T2D, trigger the Nlrp3 inflammasome and generate mature interleukin (IL)-1β. A T2D therapy, glyburide, suppresses IAPP-mediated IL-1β production in vitro. Processing of IL-1β initiated by IAPP first requires priming, a process that involves glucose metabolism and can be facilitated by minimally oxidized low density lipoprotein. Finally, mice transgenic for human IAPP have increased IL-1β in pancreatic islets, which colocalizes with amyloid and macrophages. Our findings reveal novel mechanisms in the pathogenesis of T2D and treatment of pathology caused by IAPP.
Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation. Main Text: The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) is a cytosolic sensor of diverse pathogen-and host-derived molecules. Upon activation, NLRP3 oligomerises and recruits apoptosis-associated speck-like protein containing a CARD (ASC), forming a platform for the binding, dimerisation and activation of the caspase-1 protease 1. Caspase-1 then cleaves the pro-inflammatory cytokines prointerleukin-1 (IL-1) and pro-IL-18, mediating the secretion of their active cytokines. Caspase-1 also cleaves Gasdermin-D, triggering pyroptosis 2,3. NLRP3-driven inflammation is pathological in the development of many diseases including cryopyrin-associated periodic syndromes, Alzheimer's Disease, Parkinson's
The inflammasome generates caspase-1 p20/p10, presumed to be the active protease. Boucher et al. demonstrate that the inflammasome contains an active caspase-1 species, p33/p10, and functions as a holoenzyme. Further caspase-1 self-processing generates and releases p20/p10 to terminate protease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.