Purpose E-cigarette or vaping product use associated lung injury (EVALI) has received national attention as an epidemic resulting in cases of significant morbidity and mortality. We aim to present the clinical and imaging findings in adolescents with pulmonary symptoms from suspected EVALI. Methods Chest radiographs and CTs of adolescents (< 19 years) with acute pulmonary symptoms and history of vaping were reviewed by two radiologists in consensus. Clinical presentation and laboratory data were derived from the electronic medical records including pulmonary function tests (PFTs). Results Eleven patients were identified (9 male, mean 16.6 years). The most common presentation was progressive, subacute respiratory distress with abdominal pain. All but one of the patients tested positive for tetrahydrocannabinol. Chest radiograph features were notable for interstitial pattern of opacities (91%) and basilar abnormalities (82%). CT features were notable for ground-glass opacities (89%), interstitial opacities (78%), and subpleural sparing (67%). Eight patients underwent PFTs. Six had diffusing capacity measurement, which demonstrated impaired diffusion in 3 (50%). All patients received supportive treatment with supplemental oxygen and corticosteroids. Conclusion Adolescents with suspected EVALI commonly present with subacute respiratory distress with abdominal pain. Imaging findings include ground-glass opacities, subpleural sparing, and basilar opacities, most consistent with organizing pneumonia or hypersensitivity pneumonitis. Recognition of the common imaging findings may have significant patient management implications, especially if the diagnosis is not suspected clinically. The lung function effects of vaping are consistent with mildly reduced airflow, which improves on follow-up testing, and reduced diffusion capacity, which, concerningly, does not improve.
Bowel diseases of prematurity, including necrotizing enterocolitis, are dreaded ailments of neonates. Early diagnosis is difficult, with clinical and radiographic findings often inconclusive. We present a novel use of contrast-enhanced ultrasound in detection of pediatric bowel disease. Early identification of compromised blood flow or an at-risk bowel can be quantitatively detected and monitored. This ability has implications for guidance of emerging therapies, allowing targeting of inflammation. These findings represent an advancement in detection of bowel disease in neonates.
Purpose: Infants who require extracorporeal membrane oxygenation (ECMO) therapy have an increased risk of neurological complications and mortality. Microvascular imaging (MVI) is an advanced Doppler technique that allows high-resolution visualization of microvasculature in the brain. We describe the feasibility and utility of MVI for the evaluation of cerebral microvascular perfusion in patients undergoing ECMO. Methods: We retrospectively analyzed brain MVI scans of neonates undergoing ECMO. Two pediatric radiologists qualitatively assessed MVI scans to determine the presence or absence of tortuosity, symmetry, heterogeneity, engorgement, and hypoperfusion of the basal ganglia–thalamus (BGT) region, as well as the presence or absence of white matter vascular engorgement and increased peri-gyral flow in the cortex. We tested the association between the presence of the aforementioned brain MVI features and clinical outcomes. Results: We included 30 patients, 14 of which were male (46.7%). The time of ECMO duration was 11.8 ± 6.9 days. The most prevalent microvascular finding in BGT was lenticulostriate vessel tortuosity (26/30, 86.7%), and the most common microvascular finding in the cortex was increased peri-gyral flow (10/24, 41.7%). Cortical white matter vascular engorgement was significantly associated with the presence of any poor outcome as defined by death, seizure, and/or cerebrovascular events on magnetic resonance imaging (p = 0.03). Conclusion: MVI is a feasible modality to evaluate cerebral perfusion in infants undergoing ECMO. Additionally, evidence of white matter vascular engorgement after ECMO cannulation could serve as a predictor of poor outcomes in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.