Insulin degrading enzyme (IDE) is a protease which cleaves insulin and other bioactive peptides such as amyloid-β. Knock-out and genetic studies have linked IDE to Alzheimer's disease and type-2 diabetes. As the major insulin degrading protease, IDE is a candidate drug target in diabetes. Here we use kinetic Target-Guided Synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and SAXS analyses shows that it locks IDE in a closed conformation. Amongst a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signaling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.
Hydroxamates are valuable tools for chemical biology as well as interesting leads for medicinal chemistry. Although many hydroxamates display nanomolar activities against metalloproteases, only three hydroxamates have reached the market, among which is the HDAC inhibitor vorinostat. Failures in development are generally attributed to lack of selectivity, toxicity, or poor stability. To help medicinal chemists with respect to plasma stability, we have performed the first and preliminary study on structure-plasma stability for hydroxamates. We define some structural rules to predict or improve the plasma stability in the preclinical stage.
ChemistryCompounds 1-3 (Figure 1) were synthesized as previously described. 10 Compound 1 and (Z)-2 were respectively a hit *To whom correspondence should be addressed. For B.D. and R.D-P.: phone,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.