The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to accurately observe ultra-high-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. POEMMA will observe the air fluorescence produced by extensive air showers (EASs) from UHECRs and potentially UHE neutrinos above 20 EeV. Additionally, POEMMA has the ability to observe the Cherenkov signal from upward-moving EASs induced by Earth-interacting tau neutrinos above 20 PeV. The POEMMA spacecraft are designed to quickly re-orientate to follow up transient neutrino sources and obtain currently unparalleled neutrino flux sensitivity. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical satellites flying in loose formation in 525 km altitude orbits. Each POEMMA instrument incorporates a wide field-of-view (45∘) Schmidt telescope with an optical collecting area of over 6 m2. The hybrid focal surface of each telescope includes a fast (1 μs) near-ultraviolet camera for EAS fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov EAS observations. In a 5-year mission, POEMMA will provide measurements that open new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these extreme energies.
Using a semi-analytic model of non-linear diffusive shock acceleration, we model the total spectrum of cosmic ray (CR) electrons accelerated by supernova remnants (SNRs). Because electrons experience synchrotron losses in the amplified magnetic fields characteristic of SNRs, they exhibit substantially steeper spectra than protons. In particular, we find that the difference between the electron and proton spectral index (power law slope) ranges from 0.1 to 0.4. Our findings must be reckoned with theories of Galactic CR transport, which often assume that electrons and protons are injected with the same slope, and may especially have implications for the observed "positron excess."
Using a semianalytical approach based on the thin-shell approximation, we calculate the long-term evolution of supernova remnants (SNRs) while also accounting for the cosmic rays (CRs) accelerated at their blast waves. Our solution reproduces the results of state-of-the-art fluid simulations across the adiabatic and radiative stages for the gas-only case, and it predicts that typical CR acceleration efficiencies (≈10%) can boost SNR momentum deposition by a factor of 2-3. This enhancement can become as large as an order of magnitude in environments in which the gas experiences more severe radiative losses. This result may have a crucial impact on modeling the effect of supernova feedback on star formation and galaxy evolution.
Massive black holes at the centers of galaxies can launch powerful wide-angle winds that, if sustained over time, can unbind the gas from the stellar bulges of galaxies. These winds may be responsible for the observed scaling relation between the masses of the central black holes and the velocity dispersion of stars in galactic bulges. Propagating through the galaxy, the wind should interact with the interstellar medium creating a strong shock, similar to those observed in supernovae explosions, which is able to accelerate charged particles to high energies.In this work we use data from the Fermi Large Area Telescope to search for the γ-ray emission from galaxies with an ultrafast outflow (UFO): a fast (v ∼ 0.1 c), highly ionized outflow, detected in absorption at hard X-rays in several nearby active galactic nuclei (AGN). Adopting a sensitive stacking analysis we are able to detect the average γ-ray emission from these galaxies and exclude that it is due to processes other than UFOs. Moreover, our analysis shows that the γ-ray luminosity scales with the AGN bolometric luminosity and that these outflows transfer ∼0.04% of their mechanical power to γ-rays. Interpreting the observed γ-ray emission as produced by cosmic rays (CRs) accelerated at the shock front, we find that the γ-ray emission may attest to the onset of the wind-host interaction and that these outflows can energize charged particles up to the transition region between galactic and extragalactic CRs.Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Galactic winds (572); Gamma-rays (637) 72 Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of Education, University and Research (MIUR).
Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2, the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝E −2.2) and the very steep spectra of young radio supernovae (∝E −3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.