Background: Previous functional magnetic resonance imaging (fMRI) sleep studies have been hampered by the difficulty of obtaining extended amounts of sleep in the sleep-adverse environment of the scanner and often have resorted to manipulations such as sleep depriving subjects before scanning. These manipulations limit the generalizability of the results.
New method:The current study is a methodological validation of procedures aimed at obtaining all-night fMRI data in sleeping subjects with minimal exposure to experimentally induced sleep deprivation. Specifically, subjects slept in the scanner on two consecutive nights, allowing the first night to serve as an adaptation night.Results/comparison with existing method(s): Sleep scoring results from simultaneously acquired electroencephalography data on Night 2 indicate that subjects (n = 12) reached the full spectrum of sleep stages including slow-wave (M = 52.1 min, SD = 26.5 min) and rapid eye movement (REM, M = 45.2 min, SD = 27.9 min) sleep and exhibited a mean of 2.1 (SD = 1.1) nonREM-REM sleep cycles.
Transforming growth factor-β-activated kinase-1 (TAK1) is a mitogen activated protein kinase kinase kinase that is involved in diverse biological roles across species. Functioning downstream of TGF-β and BMP signaling, TAK1 mediates the activation of the c-Jun Nterminal kinase signaling pathway, serves as the target of pro-inflammatory cytokines, such as TNF-α, mediates NF-κβ activation, and plays a role in Wnt/Fz signaling in mesenchymal stem cells. Expression of TAK1 in the cochlea has not been defined. Data mining of previously published murine cochlear gene expression databases indicated that TAK1, along with TAK1 interacting proteins 1 (TAB1), and 2 (TAB2), is expressed in the developing and adult cochlea. The expression of TAK1 in the developing cochlea was confirmed using RT-PCR and immunohistochemistry. Immunolabeling of TAK1 in embryonic, neonatal, and mature cochleas via DAB chromogenic and fluorescent immunohistochemistry indicated that TAK1 is broadly expressed in both the developing otocyst and periotic mesenchyme at E12.5 but becomes more restricted to specific types of supporting cells as the organ of Corti matures. By P1, TAK1 immunolabeling is found in cells of the stria vascularis, hair cells, supporting cells, and Kölliker's organ. By P16, TAK1 labeling is limited to cochlear supporting cells. In the adult cochlea, TAK1 immunostaining is only present in the cytoplasm of Deiters' cells, pillar cells, inner phalangeal cells, and inner border cells, with no expression in any other cochlear cell types. While the role of TAK1 in the inner ear is unclear, TAK1 expression may be used as a novel marker for specific sub-populations of supporting cells.
Adaptation to speech with a foreign accent is possible through prior exposure to talkers with that same accent. For young listeners with normal hearing, short term, accent-independent adaptation to a novel foreign accent is also facilitated through exposure training with multiple foreign accents. In the present study, accent-independent adaptation is examined in younger and older listeners with normal hearing and older listeners with hearing loss. Retention of training benefit is additionally explored. Stimuli for testing and training were HINT sentences recorded by talkers with nine distinctly different accents. Following two training sessions, all listener groups showed a similar increase in speech perception for a novel foreign accent. While no group retained this benefit at one week post-training, results of a secondary reaction time task revealed a decrease in reaction time following training, suggesting reduced listening effort. Examination of listeners' cognitive skills reveals a positive relationship between working memory and speech recognition ability. The present findings indicate that, while this no-feedback training paradigm for foreign-accented English is successful in promoting short term adaptation for listeners, this paradigm is not sufficient in facilitation of perceptual learning with lasting benefits for younger or older listeners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.