The hormone prolactin promotes lactational differentiation of mammary epithelial cells (MECs) via its cognate receptor and the downstream JAK2-STAT5a signalling pathway. In turn this regulates transcription of milk protein genes. Prolactin signalling depends on a cross-talk with basement membrane extracellular matrix (ECM) via β1 integrins which activate both ILK and Rac1 and are required for STAT5a activation and lactational differentiation. Endocytosis is an important regulator of signalling. It can both enhance and suppress cytokine signalling, although the role of endocytosis for prolactin signalling is not known. Here we show that clathrin-mediated endocytosis is required for ECM-dependent STAT5 activation. In the presence of ECM, prolactin is internalised via a clathrin-dependent, but caveolin-independent, route. This occurs independently from JAK2 and Rac signalling, but is required for full phosphorylation and activation of STAT5. Prolactin is internalised into early endosomes, where the master early endosome regulator Rab5b promotes STAT5 phosphorylation. These data reveal a novel role for ECM-driven endocytosis in the positive regulation of cytokine signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.