We investigated female mate choice on the basis of visual cues in two populations of Dendrobates pumilio, the strawberry poison frog, from the Bocas del Toro Archipelago in Panama, Central America. Mate choice experiments were carried out by presenting subject females of each of two morphs of this species (orange and green) from two di¡erent island populations (Nancy Key and Pope Island) with object frogs (one of each morph) under glass at one end of a terrarium. Recorded calls were played simultaneously from behind both object frogs. The experiments were carried out under two light regimes: (i) white light, and (ii) relatively monochromatic ¢ltered blue light. Subject females from each population displayed a signi¢cant preference for their own morph under white light, but not under blue light. These results indicate that female D. pumilio use visual cues in mate choice, and suggest that colour may be the visual cue they use.
Examples of MÏllerian mimicry, in which resemblance between unpalatable species confers mutual bene¢t, are rare in vertebrates. Strong comparative evidence for mimicry is found when the colour and pattern of a single species closely resemble several di¡erent model species simultaneously in di¡erent geographical regions. To demonstrate this, it is necessary to provide compelling evidence that the putative mimics do, in fact, form a monophyletic group. We present molecular phylogenetic evidence that the poison frog Dendrobates imitator mimics three di¡erent poison frogs in di¡erent geographical regions in Peru. DNA sequences from four di¡erent mitochondrial gene regions in putative members of a single species are analysed using parsimony, maximum-likelihood and neighbour-joining methods. The resulting hypotheses of phylogenetic relationships demonstrate that the di¡erent populations of D. imitator form a monophyletic group. To our knowledge, these results provide the ¢rst evidence for a MÏllerian mimetic radiation in amphibians in which a single species mimics di¡erent sympatric species in di¡erent geographical regions.
Ancient endosymbionts have been associated with extreme genome structural stability with little differentiation in gene inventory between sister species. Tsetse flies (Diptera: Glossinidae) harbor an obligate endosymbiont, Wigglesworthia, which has coevolved with the Glossina radiation. We report on the ~720-kb Wigglesworthia genome and its associated plasmid from Glossina morsitans morsitans and compare them to those of the symbiont from Glossina brevipalpis. While there was overall high synteny between the two genomes, a large inversion was noted. Furthermore, symbiont transcriptional analyses demonstrated host tissue and development-specific gene expression supporting robust transcriptional regulation in Wigglesworthia, an unprecedented observation in other obligate mutualist endosymbionts. Expression and immunohistochemistry confirmed the role of flagella during the vertical transmission process from mother to intrauterine progeny. The expression of nutrient provisioning genes (thiC and hemH) suggests that Wigglesworthia may function in dietary supplementation tailored toward host development. Furthermore, despite extensive conservation, unique genes were identified within both symbiont genomes that may result in distinct metabolomes impacting host physiology. One of these differences involves the chorismate, phenylalanine, and folate biosynthetic pathways, which are uniquely present in Wigglesworthia morsitans. Interestingly, African trypanosomes are auxotrophs for phenylalanine and folate and salvage both exogenously. It is possible that W. morsitans contributes to the higher parasite susceptibility of its host species.
Empirical phylogeographic studies have progressively sampled greater numbers of loci over time, in part motivated by theoretical papers showing that estimates of key demographic parameters improve as the number of loci increases. Recently, next-generation sequencing has been applied to questions about organismal history, with the promise of revolutionizing the field. However, no systematic assessment of how phylogeographic data sets have changed over time with respect to overall size and information content has been performed. Here, we quantify the changing nature of these genetic data sets over the past 20 years, focusing on papers published in Molecular Ecology. We found that the number of independent loci, the total number of alleles sampled and the total number of single nucleotide polymorphisms (SNPs) per data set has improved over time, with particularly dramatic increases within the past 5 years. Interestingly, uniparentally inherited organellar markers (e.g. animal mitochondrial and plant chloroplast DNA) continue to represent an important component of phylogeographic data. Singlespecies studies (cf. comparative studies) that focus on vertebrates (particularly fish and to some extent, birds) represent the gold standard of phylogeographic data collection. Based on the current trajectory seen in our survey data, forecast modelling indicates that the median number of SNPs per data set for studies published by the end of the year 2016 may approach~20 000. This survey provides baseline information for understanding the evolution of phylogeographic data sets and underscores the fact that development of analytical methods for handling very large genetic data sets will be critical for facilitating growth of the field.Keywords: DNA sequences, information content, phylogeography, sampling, single nucleotide polymorphisms, temporal trends IntroductionPhylogeographers have been working to collect multilocus data ever since a series of theoretical papers pertinent to the discipline demonstrated that estimates of key demographic parameters improve as the number of loci increases (e.g. Edwards & Beerli 2000;Hey & Nielsen 2004;Felsenstein 2006;Carling & Brumfield 2007). Recent improvements in DNA sequencing technology have led to platforms with greater speed, resolution and/or output (e.g. Margulies et al. 2005;Bentley et al. 2008;Rothberg et al. 2011) when compared to the traditional Sanger method. These technological advances, together with the development of general-purpose protocols for discovering and screening many DNA sequence polymorphisms arrayed across a species' genome (e.g. Baird et al. 2008;Kerstens et al. 2009;Faircloth et al. 2012;Peterson et al. 2012), are transforming the field of phylogeography to one that is no longer data limited. Investigations concerned with reconstructing long-term population history generally require large numbers of sampled alleles (i.e. many individuals and populations), across multiple loci, to adequately characterize levels of diversity and spatial genetic structuring (McCor...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.