Inhibitor of apoptosis proteins (IAPs) provide a critical barrier to inappropriate apoptotic cell death through direct binding and inhibition of caspases. We demonstrate that degradation of IAPs is an important mechanism for the initiation of apoptosis in vivo. Drosophila Morgue, a ubiquitin conjugase-related protein, promotes DIAP1 down-regulation in the developing retina to permit selective programmed cell death. Morgue complexes with DIAP1 in vitro and mediates DIAP1 degradation in a manner dependent on the Morgue UBC domain. Reaper (Rpr) and Grim, but not Hid, also promote the degradation of DIAP1 in vivo, suggesting that these proteins promote cell death through different mechanisms.
Selective cell death provides developing tissues with the means to precisely sculpt emerging structures. By imposing patterned cell death across a tissue, boundaries can be created and tightened. As such, programmed cell death is becoming recognized as a major mechanism for patterning of a variety of complex structures. Typically, cell types are initially organized into a fairly loose pattern; selective death then removes cells between pattern elements to create correct structures. In this review, we examine the role of selective cell death across the course of Drosophila development, including the tightening of embryonic segmental boundaries, head maturation, refining adult structures such as the eye and the wing, and the ability of cell death to correct for pattern defects introduced by gene mutation. We also review what is currently known of the relationship between signals at the cell surface that are responsible for tissue patterning and the basal cell death machinery, an issue that remains poorly understood.
The correct organization of cells within an epithelium is essential for proper tissue and organ morphogenesis. The role of Decapentaplegic/Bone morphogenetic protein (Dpp/BMP) signaling in cellular morphogenesis during epithelial development is poorly understood. In this paper, we used the developing Drosophila pupal retina -looking specifically at the reorganization of glial-like support cells that lie between the retinal ommatidia -to better understand the role of Dpp signaling during epithelial patterning. Our results indicate that Dpp pathway activity is tightly regulated across time in the pupal retina and that epithelial cells in this tissue require Dpp signaling to achieve their correct shape and position within the ommatidial hexagon. These results point to the Dpp pathway as a third component and functional link between two adhesion systems, Hibris-Roughest and DEcadherin. A balanced interplay between these three systems is essential for epithelial patterning during morphogenesis of the pupal retina. Importantly, we identify a similar functional connection between Dpp activity and DE-cadherin and Rho1 during cell fate determination in the wing, suggesting a broader link between Dpp function and junctional integrity during epithelial development.
The structure of nuclear chromatin may limit the accessibility of carcinogenic agents to DNA. In the case of oxidative DNA strand cleavage mediated by the physiologically relevant iron chelate, iron-ADP, histone-associated nucleosomal DNA is protected while internucleosomal DNA is susceptible to damage. We now find that the distribution of iron-ADP-generated 8-hydroxydeoxyguanosine, a potentially mutagenic oxidative base change, shows relative targeting to internucleosomal sites (3.5-fold increased oxidative modification of internucleosomal compared with nucleosomal DNA as the minimal degree of enrichment). In contrast, iron-EDTA, which generates hydroxyl radical in the 'fluid phase', does not target internucleosomal DNA. Thus, physiologic iron chelates may promote site-specific damage and thereby be relevant to mechanisms of iron-dependent oxidative mutagenesis and carcinogenesis.
The sensory organs of the Drosophila adult leg provide a simple model system with which to investigate patternforming mechanisms. In the leg, a group of small mechanosensory bristles is organized into a series of longitudinal rows, a pattern that depends on periodic expression of the hairy gene (h) and the proneural genes achaete (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.