Purpose A multidimensional classification approach suggests that motor control impairment subgroups exist in non-specific chronic low back pain (NSCLBP). Differences in sitting lumbar posture have been identified between two such subgroups [flexion pattern (FP) and active extension pattern (AEP)] and healthy individuals; however, functional spinal movement has not been explored. This study will evaluate whether NSCLBP subgroups exhibit regional spinal kinematic differences, compared to healthy individuals, during functional tasks. Methods Observational, cross-sectional study design. Spinal kinematics of 50 NSCLBP subjects (27 FP, 23 AEP) and 28 healthy individuals were investigated using 3D motion analysis (Vicon TM ) during functional tasks [reaching upwards, step down, step up, lifting, and replacing a box, stand-to-sit, sit-to-stand, bending to retrieve (and returning from retrieving) a pen from the floor]. Mean sagittal angle for the total thoracic, total lumbar, upper thoracic, lower thoracic, upper lumbar, and lower lumbar regions between groups was compared. Results Significant differences were observed in lower thoracic and upper lumbar regions between NSCLBP subgroups during most tasks. Significant differences were observed between the FP and healthy group in the lower thoracic region during stand-to-sit-to-stand tasks and bending (and returning from) to retrieve a pen from the floor. All significant results demonstrated the FP group to operate in comparatively greater flexion. Conclusions The thoraco-lumbar spine discriminated between FP and AEP, and FP and healthy groups during functional tasks. FP individuals demonstrated more kyphotic thoraco-lumbar postures, which may be pain provocative. No significant differences were observed between AEP and healthy groups, suggesting that alternative mechanisms may occur in AEP.
Purpose In vivo quantification of intervertebral motion through imaging has progressed to a point where biomarkers for low back pain are emerging. This makes possible deeper study of the condition's biometrics. However, the measurement of change over time involves error. The purpose of this prospective investigation is to determine the intrasubject repeatability of six in vivo intervertebral motion parameters using quantitative fluoroscopy. Methods Intrasubject reliability (ICC) and minimal detectable change (MDC) of baseline to 6-week follow-up measurements were calculated for six lumbar spine intervertebral motion parameters in 109 healthy volunteers. A standardised quantitative fluoroscopy (QF) protocol was used to provide measurements in the coronal and sagittal planes using both passive recumbent and active weight-bearing motion. Parameters were: intervertebral range of motion (IV-RoM), laxity, motion sharing inequality (MSI), motion sharing variability (MSV), flexion translation and anterior disc height change during flexion. Results The best overall intrasubject reliability (ICC) and agreement (MDC) were for disc height (ICC 0.89, MDC 43%) and IV-RoM (ICC 0.96, MDC 60%), and the worst for MSV (ICC 0.04, MDC 408%). Laxity, MSI and translation had acceptable reliability (most ICCs > 0.60), but not agreement (MDC > 85%). Conclusion Disc height and IV-RoM measurement using QF could be considered for randomised trials, while laxity, MSI and translation could be considered for moderators, correlates or mediators of patient-reported outcomes. MSV had both poor reliability and agreement over 6 weeks. Graphical abstract These slides can be retrieved under Electronic Supplementary Material.
ObjectiveTo examine functional performance differences using kinematic and kinetic analysis between participants with and without knee osteoarthritis (OA) to determine which outcomes best characterize persons with and without knee OA.MethodsParticipants with unilateral moderate knee OA (Kellgren–Lawrence grades 2 or 3) and controls without knee pain were matched for age, gender, and body mass index. Primary outcomes included temporal parameters, joint rotations and moments, and ground reaction forces assessed via 3D motion capture during walking and ascending/descending stairs. Secondary outcomes included timed functional activities (sit to stand; tying shoelaces), 48 hrs lower limb activity monitoring, and patient-reported outcome measures (Knee Injury and Osteoarthritis Outcome Score, Western Ontario and McMaster Universities Osteoarthritis Index, European Quality of Life–5 Dimensions).ResultsEight matched pairs were analyzed. Compared with controls, OA participants exhibited significant reductions in peak frontal hip and sagittal knee moments, and decreased peak anterior ground reaction force with the affected limb while walking. Ascending stairs, OA participants had slower speed, fewer strides per minute, longer cycle and stance times, and increased trunk range of motion (ROM) in assessments of both limbs; longer swing time and reduced ankle ROM in the affected limb; and increased knee frontal ROM in the unaffected limb. Descending stairs, OA participants had fewer strides per minute and decreased trunk transverse ROM in assessments of both limbs; increased knee frontal ROM in the affected limb; and longer strides, shorter stance and cycle times, increased trunk sagittal and decreased knee transverse ROMs in the unaffected limbs vs controls. Compared with controls, OA participants had slower walking cadence (120–130 vs 100–110 steps/min, respectively), took significantly longer on timed functional measures, and had significantly worse scores in patient-reported outcomes.ConclusionSeveral objectives and patient-reported measures examined in this study could potentially be considered as outcomes in pharmacologic or physical therapy OA trials.
BackgroundTrunk muscle dysfunction is often regarded as a key feature of non-specific chronic low back pain (NSCLBP) despite being poorly understood and variable with increases, decreases and no change in muscle activity reported. Differences in thoraco-lumbar kinematics have been observed in motor control impairment NSCLBP subgroups (Flexion Pattern, Active Extension Pattern) during static postures and dynamic activities. However, potential differences in muscle activity during functional tasks has not been established in these subgroups to date.MethodsA case-control study design recruited 50 NSCLBP subjects (27 Flexion Pattern, 23 Active Extension Pattern) and 28 healthy individuals. Surface electromyography determined muscle activity during functional tasks: reaching upwards, step-down, step-up, lifting and replacing a box, stand-to-sit, sit-to-stand, bending to retrieve (and returning from retrieving) a pen from the floor. Normalised (% sub-maximal voluntary contraction) mean amplitude electromyography of bilateral musculature (transversus abdominis/internal oblique, external oblique, superficial lumbar multifidus and longissimus thoracis) was analysed using Kruskal-Wallis and post-hoc Mann-Whitney U tests.ResultsTransversus abdominis/internal oblique activity was significantly increased in the Flexion Pattern group compared to controls during stand-to-sit (p = 0.009) on the left side only. External oblique activity was significantly greater in the Active Extension Pattern group compared to controls during box lift (p = 0.016) on the right side only. Significantly greater activity was identified in the right Superficial lumbar multifidus during step up (p = 0.029), reach up (p = 0.013) and box replace (p = 0.007) in the Active Extension Pattern group compared to controls. However left-sided superficial lumbar multifidus activity was significantly greater in the Flexion Pattern group (compared to controls) only during stand-to-sit (p = 0.009). No significant differences were observed in longissimus thoracis activity bilaterally during any task. No significant differences between NSCLBP subgroups were observed.ConclusionsMuscle activity in these NSCLBP subgroups appears to be highly variable during functional tasks with no clear pattern of activity identified. The findings reflect inconsistencies and variability in trunk muscle activity previously observed in these NSCLBP subgroups. Further work evaluating ratios of muscle activity and changes in muscle activity throughout task duration is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.