To understand the mechanism by which human immunodeficiency virus type 1 (HIV) capsids are formed, we have reconstituted the assembly of immature HIV capsids de novo in a cell-free system. Capsid authenticity is established by multiple biochemical and morphologic criteria. Known features of the assembly process are closely reproduced, indicating the fidelity of the cell-free reaction. Assembly is separated into co- and posttranslational phases, and three independent posttranslational requirements are demonstrated: (a) ATP, (b) a detergent-sensitive host factor, and (c) a detergent-insensitive host subcellular fraction that can be depleted and reconstituted. Assembly appears to proceed by way of multiple intermediates whose conversion to completed capsids can be blocked by either ATP depletion or treatment with nondenaturing detergent. Specific subsets of these intermediates accumulate upon expression of various assembly-defective Gag mutants in the cell-free system, suggesting that each mutant is blocked at a particular step in assembly. Furthermore, the accumulation of complexes of similar sizes in cells expressing the corresponding mutants suggests that comparable intermediates may exist in vivo. From these data, we propose a multi-step pathway for the biogenesis of HIV capsids, in which the assembly process can be disrupted at a number of discrete points.
Studies of HIV-1 capsid formation in a cell-free system revealed that capsid assembly occurs via an ordered series of assembly intermediates and requires host machinery. Here we use this system to examine 12 mutations in HIV-1 Gag that others studied previously in intact cells. With respect to capsid formation, these mutations generally produced the same phenotype in the cell-free system as in cells, indicating the cell-free system's high degree of fidelity. Analysis of assembly intermediates reveals that a mutation in the distal region of CA (322 LDeltaS) and truncations proximal to the second cys-his box in NC block multimerization of Gag at early stages in the cell-free capsid assembly pathway. In contrast, mutations in the region of amino acids 56-68 (located in the proximal portion of MA) inhibit assembly at a later point in the pathway. Other mutations, including truncations distal to the first cys-his box in NC and mutations in the distal half of MA (88HDeltaG, 85YDeltaG, Delta104-115, and Delta115-129), do not affect formation of immature capsids in the cell-free system. These data provide new information on the role of different domains in Gag during the early events of capsid assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.