Temporomandibular joint disorder (TMD) is associated with pain in the joint (temporomandibular joint, TMJ) and muscles involved in mastication. TMD pain dissipates following menopause but returns in some women undergoing estrogen replacement therapy. Progesterone has both anti-inflammatory and antinociceptive properties, while estrogen's effects on nociception are variable and highly dependent on both natural hormone fluctuations and estrogen dosage during pharmacological treatments, with high doses increasing pain. Allopregnanolone, a progesterone metabolite and positive allosteric modulator of the GABA A receptor, also has antinociceptive properties. While progesterone and allopregnanolone are antinociceptive, their effect on estrogen-exacerbated TMD pain has not been determined. We hypothesized that removing the source of endogenous ovarian hormones would reduce inflammatory allodynia in the TMJ of rats and both progesterone and allopregnanolone would attenuate the estrogen-provoked return of allodynia. Baseline mechanical sensitivity was measured in female Sprague-Dawley rats (150-175 g) using the von Frey filament method followed by a unilateral injection of complete Freund's adjuvant (CFA) into the TMJ. Mechanical allodynia was confirmed 24 h later; then rats were ovariectomized or received sham surgery. Two weeks later, allodynia was reassessed and rats received one of the following subcutaneous hormone treatments over 5 days: a daily pharmacological dose of estradiol benzoate (E2; 50 µg/kg), daily E2 and pharmacological to sub-physiological doses of progesterone (P4; 16 mg/kg, 16 µg/kg, or 16 ng/kg), E2 daily and interrupted P4 given every other day, daily P4, or daily vehicle control. A separate group of animals received allopregnanolone (0.16 mg/kg) instead of P4. Allodynia was reassessed 1 h following injections. Here, we report that CFA-evoked mechanical allodynia was attenuated following ovariectomy and daily high E2 treatment triggered the return of allodynia, which was rapidly attenuated when P4 was also administered either daily or every other day. Allopregnanolone treatment, whether daily or every other day, also attenuated estrogen-exacerbated
Herpes zoster, the result of varicella-zoster virus (VZV) reactivation, is frequently complicated by difficult-to-treat chronic pain states termed postherpetic neuralgia (PHN). While there are no animal models of VZV-induced pain following viral reactivation, subcutaneous VZV inoculation of the rat causes long-term nocifensive behaviors indicative of mechanical and thermal hypersensitivity. Previous studies using UV-inactivated VZV in the rat model suggest viral gene expression is required for the development of pain behaviors. However, it remains unclear if complete infection processes are needed for VZV to induce hypersensitivity in this host. To further assess how gene expression and replication contribute, we developed and characterized three replication-conditional VZV using a protein degron system to achieve drug-dependent stability of essential viral proteins. Each virus was then assessed for induction of hypersensitivity in rats under replication permissive and nonpermissive conditions. VZV with a degron fused to ORF9p, a late structural protein that is required for virion assembly, induced nocifensive behaviors under both replication permissive and nonpermissive conditions, indicating that complete VZV replication is dispensable for the induction of hypersensitivity. This conclusion was confirmed by showing that a genetic deletion recombinant VZV lacking DNA packaging protein ORF54p still induced prolonged hypersensitivities in the rat. In contrast, VZV with a degron fused to the essential IE4 or IE63 proteins, which are involved in early gene regulation of expression, induced nocifensive behaviors only under replication permissive conditions, indicating importance of early gene expression events for induction of hypersensitivity. These data establish that while early viral gene expression is required for the development of nocifensive behaviors in the rat, complete replication is dispensable. We postulate this model reflects events leading to clinical PHN, in which a population of ganglionic neurons become abortively infected with VZV during reactivation and survive, but host signaling becomes altered in order to transmit ongoing pain.
Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund’s adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2′,7′-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.
The orofacial pain pathway projects to the parabrachial and amygdala, and sex steroids have been shown to affect neuronal activity in these regions. GABA positive cells in the amygdala are influenced by sex steroid metabolites to affect pain, and sex steroids have been shown to alter the expression of genes in the parabrachial, changing neuronal excitability. Mechanisms by which sex steroids affect amygdala and parabrachial signaling are unclear. The expression of genes in the parabrachial and amygdala in diestrus (low estradiol) and proestrus (high estradiol) female rats were evaluated in this study. First, varicella zoster virus was injected into the whisker pad of female rats to induce a pain response. Second, gene expression was quantitated using RNA-seq one week after injection. Genes that had the greatest change in expression and known to function in pain signaling were selected for the quantitation of protein content. Protein expression of four genes in the parabrachial and seven genes in the amygdala were quantitated by ELISA. In the parabrachial, neurexin 3 (Nrnx3) was elevated at proestrus. Nrnx3 has a role in AMPA receptor and GABA signaling. Neuronatin (Nnat) and protein phosphatase, Mg2+/Mn2+ dependent 1E (Ppm1e) were elevated in the parabrachial of diestrus animals both genes having a role in pain signaling. Epoxide hydroxylase (Ephx2) was elevated in the parabrachial at proestrus and the vitamin D receptor (Vdr) was elevated in the amygdala. Ephx2 antagonists and vitamin D have been used to treat neuropathic pain. In conclusion, sex steroids regulate genes in the parabrachial and amygdala that might result in the greater pain response observed during diestrus.
Within the reticular thalamic nucleus neurons express gamma aminobutyric acid (GABA) and these cells project to the ventral posteromedial thalamic nucleus. When GABA activity decreases the activity of excitatory cells in the ventral posteromedial nucleus would be expected to increase. In this study, we addressed the hypothesis that attenuating GABAergic cells in the reticular thalamic nucleus increases excitatory activity in the ventral posteromedial nucleus increasing varicella zoster virus (VZV) associated pain in the orofacial region. Adeno-associated virus (AAV) was infused in the reticular thalamic nucleus of Gad1-Cre rats. This virus transduced a G inhibitory designer receptor exclusively activated by designer drugs (DREADD) gene that was Cre dependent. A dose of estradiol that was previously shown to reduce VZV pain and increase GABAergic activity was administered to castrated and ovariectomized rats. Previous studies suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons and decreasing the activity of excitatory cells within the lateral thalamic region. The ventral posteromedial nucleus was infused with AAV containing a GCaMP6f expression construct. A glass lens was implanted for miniscope imaging. Our results show that the activity of GABA cells within the reticular thalamic region decreased with clozapine N-oxide treatment concomitant with increased calcium activity of excitatory cells in the ventral posteromedial nucleus and an increased orofacial pain response. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the reticular thalamus that then inhibit excitatory activity in ventral posteromedial nucleus causing a reduction in orofacial pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.