Species faced with rapidly shifting environments must be able to move, adapt, or acclimate in order to survive. One mechanism to meet this challenge is phenotypic plasticity: altering phenotype in response to environmental change. Here, we investigated the magnitude, direction, and consequences of changes in two key phenology traits (fall bud set and spring bud flush) in a widespread riparian tree species, Populus fremontii. Using replicated genotypes from 16 populations from throughout the species’ thermal range, and reciprocal common gardens at hot, warm, and cool sites, we identified four major findings: (a) There are significant genetic (G), environmental (E), and GxE components of variation for both traits across three common gardens; (b) The magnitude of phenotypic plasticity is correlated with provenance climate, where trees from hotter, southern populations exhibited up to four times greater plasticity compared to the northern, frost‐adapted populations; (c) Phenological mismatches are correlated with higher mortality as the transfer distances between provenance and garden increase; and (d) The relationship between plasticity and survival depends not only on the magnitude and direction of environmental transfer, but also on the type of environmental stress (i.e., heat or freezing), and how particular traits have evolved in response to that stress. Trees transferred to warmer climates generally showed small to moderate shifts in an adaptive direction, a hopeful result for climate change. Trees experiencing cooler climates exhibited large, non‐adaptive changes, suggesting smaller transfer distances for assisted migration. This study is especially important as it deconstructs trait responses to environmental cues that are rapidly changing (e.g., temperature and spring onset) and those that are fixed (photoperiod), and that vary across the species’ range. Understanding the magnitude and adaptive nature of phenotypic plasticity of multiple traits responding to multiple environmental cues is key to guiding restoration management decisions as climate continues to change.
Despite a conceptual understanding that evolution and species interactions are inextricably linked, it remains challenging to study ecological and evolutionary dynamics together over long temporal scales. In this review, we argue that, despite inherent challenges associated with reconstructing historical processes, the interplay of ecology and evolution is central to our understanding of macroevolution and community coexistence, and cannot be safely ignored in community and comparative phylogenetic studies. We highlight new research avenues that foster greater consideration of both ecological and evolutionary dynamics as processes that occur along branches of phylogenetic trees. By promoting new ways forward using this perspective, we hope to inspire further integration that creatively co-utilizes phylogenies and ecological data to study eco-evolutionary dynamics over time and space.
Mounting concern over the loss of marine biodiversity has increased the urgency of understanding its consequences. This urgency spurred the publication of many short-term studies, which often report weak effects of diversity (species richness) driven by the presence of key species (the sampling effect). Longer-term field experiments are slowly accumulating, and they more often report strong diversity effects driven by species complementarity, calling into question the generality of earlier findings. However, differences among study systems in which short-and long-term studies are conducted currently limit our ability to assess whether these differences are simply due to biological or environmental differences among systems. In this paper, we compared the effect of intertidal seaweed species richness on biomass accumulation in mesocosms and field experiments using the same pool of species. We found that seaweed species richness increased biomass accumulation in field experiments in both short (2-month) and long (3-year) experiments, although effects were stronger in the longterm experiment. In contrast, richness had no effect in mesocosm experiments, where biomass accumulation was completely a function of species identity. We argue that the short-term experiments, like many published experiments on the topic, detect only a subset of possible mechanisms that operate in the field over the longer term because they lack sufficient environmental heterogeneity to allow expression of niche differences, and they are of insufficient length to capture population-level responses, such as recruitment. Many published experiments, therefore, likely underestimate the strength of diversity on ecosystem processes in natural ecosystems. diversity-ecosystem function ͉ seaweed ͉ species identity ͉ intertidal ͉ algae
Field studies of community assembly patterns increasingly use phylogenetic relatedness as a surrogate for traits. Recent experiments appear to validate this approach by showing effects of correlated trait and phylogenetic distances on coexistence. However, traits governing resource use in animals are often labile. To test whether feeding trait or phylogenetic diversity can predict competition and production in communities of grazing amphipods, we manipulated both types of diversity independently in mesocosms. We found that increasing the feeding trait diversity of the community increased the number of species coexisting, reduced dominance and changed food availability. In contrast, phylogenetic diversity had no effect, suggesting that whatever additional ecological information it represents was not relevant in this context. Although community phylogenetic structure in the field may result from multiple traits with potential for phylogenetic signal, phylogenetic effects on species interactions in controlled experiments may depend on the lability of fewer key traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.