The structure and organization of a species genome at a karyotypic level, and in interphase nuclei, have broad functional significance. Although regular sized chromosomes are studied extensively in this regard, microchromosomes, which are present in many terrestrial vertebrates, remain poorly explored. Birds have more cytologically indistinguishable microchromosomes (~ 30 pairs) than other vertebrates; however, the degree to which genome organization patterns at a karyotypic and interphase level differ between species is unknown. In species where microchromosomes have fused to other chromosomes, they retain genomic features such as gene density and GC content; however, the extent to which they retain a central nuclear position has not been investigated. In studying 22 avian species from 10 orders, we established that, other than in species where microchromosomal fusion is obvious ( Falconiformes and Psittaciformes ), there was no evidence of microchromosomal rearrangement, suggesting an evolutionarily stable avian genome (karyotypic) organization. Moreover, in species where microchromosomal fusion has occurred, they retain a central nuclear location, suggesting that the nuclear position of microchromosomes is a function of their genomic features rather than their physical size. Electronic supplementary material The online version of this article (10.1007/s00412-018-0685-6) contains supplementary material, which is available to authorized users.
BackgroundThe number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions.ResultsWe used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest.ConclusionsThe tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects.Electronic supplementary materialThe online version of this article (10.1186/s13059-018-1550-x) contains supplementary material, which is available to authorized users.
Globally, cattle production has more than doubled since the 1960s, with widespread use of artificial insemination (AI) and an emphasis on a small pool of high genetic merit animals. Selecting AI bulls with optimal fertility is, therefore, vital, as impaired fertility reduces genetic gains and production, resulting in heavy financial and environmental losses. Chromosome translocations, particularly the 1;29 Robertsonian translocation, are a common cause of reduced fertility; however, reciprocal translocations are significantly underreported due to the difficulties inherent in analysing cattle chromosomes. Based on our porcine work, we have developed an approach for the unambiguous detection of Robertsonian and reciprocal translocations, using a multiple-hybridization probe detection strategy. We applied this method on the chromosomes of 39 bulls, detecting heterozygous and homozygous 1;29 translocations and a 12;23 reciprocal translocation in a total of seven animals. Previously, karyotype analysis was the only method of diagnosing chromosomal rearrangements in cattle, and was time-consuming and error-prone. With calving rates of only 50–60%, it is vital to reduce further fertility loss in order to maximise productivity. The approach developed here identifies abnormalities that DNA sequencing will not, and has the potential to lead to long-term gains, delivering meat and milk products in a more cost-effective and environmentally-responsible manner to a growing population.
Rebecca Jennings L esbian and gay activists and historians of sexuality have long debated the relationship between psychiatry and homosexuality in Britain. The Counter-Psychiatry Group, founded in London in 1971 by the psychiatric social worker Elizabeth Wilson and her partner at the time, the sociologist Mary McIntosh, was one of the first groups to be formed within the emerging Gay Liberation Front (GLF) there. Influenced by the broader antipsychiatry movement that had developed in Britain and elsewhere in the 1960s, the group challenged the authority of the psychiatric profession to define or treat homosexuality, rejecting the concept of homosexuality as mental illness and arguing that, instead, it was social attitudes toward homosexuality that should be regarded as irrational and "sick." Turning to political techniques, the London GLF Counter-Psychiatry Group demonstrated on Harley Street and outside London hospitals such as the Maudsley and the Tavistock Clinic to protest against the use of such forms of psychiatric treatment of homosexuality as aversion therapy, brain surgery, and chemical castration. 1 In her oral history of the organization, Lisa Power, a GLF activist at the time, contends that "the gay rejection of the popular, psychiatric diagnosis of homosexuals as sick rather than criminal marked a break with the homophile movement, many of whose adherents had been happy to accept a medical pronouncement that they were unable to help themselves and therefore
With demand rising, pigs are the world’s leading source of meat protein; however significant economic loss and environmental damage can be incurred if boars used for artificial insemination (AI) are hypoprolific (sub-fertile). Growing evidence suggests that semen analysis is an unreliable tool for diagnosing hypoprolificacy, with litter size and farrowing rate being more applicable. Once such data are available, however, any affected boar will have been in service for some time, with significant financial and environmental losses incurred. Reciprocal translocations (RTs) are the leading cause of porcine hypoprolificacy, reportedly present in 0.47% of AI boars. Traditional standard karyotyping, however, relies on animal specific expertise and does not detect more subtle (cryptic) translocations. Previously, we reported development of a multiple hybridisation fluorescence in situ hybridisation (FISH) strategy; here, we report on its use in 1641 AI boars. A total of 15 different RTs were identified in 69 boars, with four further animals XX/XY chimeric. Therefore, 4.5% had a chromosome abnormality (4.2% with an RT), a 0.88% incidence. Revisiting cases with both karyotype and FISH information, we reanalysed captured images, asking whether the translocation was detectable by karyotyping alone. The results suggest that chromosome translocations in boars may be significantly under-reported, thereby highlighting the need for pre-emptive screening by this method before a boar enters a breeding programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.