Sex differences exist in many neurological and psychiatric diseases, but these have not always been addressed adequately in research. In order to address this, it is necessary to consider how sex is incorporated into the design (e.g. using a balanced design) and into the analyses (e.g. using sex as a covariate) in the published literature. We surveyed papers published in 2009 and 2019 across six journals in neuroscience and psychiatry. In this sample, we find a 30% increase in the percentage of papers reporting studies that included both sexes in 2019 compared with 2009. Despite this increase, in 2019 only 19% of papers in the sample reported using an optimal design for discovery of possible sex differences, and only 5% of the papers reported studies that analysed sex as a discovery variable. We conclude that progress to date has not been sufficient to address the importance of sex differences in research for discovery and therapeutic potential for neurological and psychiatric disease.
Background Cognitive symptoms of major depressive disorder, such as negative cognitive bias, are more prevalent in women than in men. Cognitive bias involves pattern separation which requires hippocampal neurogenesis and is modulated by inflammation in the brain. Previously, we found sex differences in the activation of the amygdala and the hippocampus in response to negative cognitive bias in rats that varied with age. Given the association of cognitive bias to neurogenesis and inflammation, we examined associations between cognitive bias, neurogenesis in the hippocampus, and cytokine and chemokine levels in the ventral hippocampus (HPC) and basolateral amygdala (BLA) of male and female rats across the lifespan. Results After cognitive bias testing, males had more IFN-γ, IL-1β, IL-4, IL-5, and IL-10 in the ventral HPC than females in adolescence. In young adulthood, females had more IFN-γ, IL-1β, IL-6, and IL-10 in the BLA than males. Middle-aged rats had more IL-13, TNF-α, and CXCL1 in both regions than younger groups. Adolescent male rats had higher hippocampal neurogenesis than adolescent females after cognitive bias testing and young rats that underwent cognitive bias testing had higher levels of hippocampal neurogenesis than controls. Neurogenesis in the dorsal hippocampus was negatively associated with negative cognitive bias in young adult males. Conclusions Overall, the association between negative cognitive bias, hippocampal neurogenesis, and inflammation in the brain differs by age and sex. Hippocampal neurogenesis and inflammation may play greater role in the cognitive bias of young males compared to a greater role of BLA inflammation in adult females. These findings lay the groundwork for the discovery of sex-specific novel therapeutics that target region-specific inflammation in the brain and hippocampal neurogenesis.
Background: Cognitive symptoms of major depressive disorder, such as negative cognitive bias, are more prevalent in women than in men. Cognitive bias involves pattern separation which requires hippocampal neurogenesis and is modulated by inflammation in the brain. Previously, we found sex differences in the activation of the amygdala and the hippocampus in response to negative cognitive bias that varied with age. Given the association of cognitive bias to neurogenesis and inflammation, we examined associations between cognitive bias, neurogenesis in the hippocampus, and cytokine and chemokine levels in the ventral hippocampus (HPC) and basolateral amygdala (BLA) of males and females across the lifespan. Results: After cognitive bias testing, males had more IFN-γ, IL-1β, IL-4, IL-5, and IL-10 in the ventral HPC than females in adolescence. In young adulthood, females had more IFN-γ, IL-1β, IL-6, and IL-10 in the BLA than males. Middle-aged rats had more IL-13, TNF-α, and CXCL1 in both regions than younger groups. Neurogenesis in the dorsal hippocampus was negatively associated with negative cognitive bias in young adult males. Conclusions: Overall, the association between negative cognitive bias, hippocampal neurogenesis, and inflammation in the brain differs by age and sex. Hippocampal neurogenesis and inflammation may play greater role in the cognitive bias of young males compared to a greater role of BLA inflammation in adult females. These findings lay the groundwork for the discovery of sex-specific novel therapeutics that target region-specific inflammation in the brain and hippocampal neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.