A biological clock in a test tube The biological clock of cyanobacteria, which remarkably requires just three proteins, has been reconstituted in vitro in a system that allows detailed study of its inputs and outputs, bringing new understanding of how environmental signals can influence a biological oscillator and how the clock controls cellular events such as gene transcription. Chavan et al . extended the known in vitro function of the core clock components to include output signals to transcriptional regulation and allow monitoring through fluorescence measurements in real time. The authors combined crystallography, mutagenesis, and quantitative modeling to further explore the clock mechanism, which may enable future synthetic biology applications. —LBR
The histidine kinase SasA enhances robustness of circadian rhythms in the cyanobacterium S. elongatus by temporally controlling expression of the core clock components, kaiB and kaiC. Here we show that SasA also engages directly with KaiB and KaiC proteins to regulate the period and enhance robustness of the reconstituted circadian oscillator in vitro, particularly under limiting concentrations of KaiB. In contrast to its role regulating gene expression, oscillator function does not require SasA kinase activity; rather, SasA uses structural mimicry to cooperatively recruit the rare, fold-switched conformation of KaiB to the KaiC hexamer to form the nighttime repressive complex. Cooperativity gives way to competition with increasing concentrations of SasA to define a dynamic window by which SasA directly modulates clock robustness.One Sentence SummarySasA controls the assembly of clock protein complexes through a balance of cooperative and competitive interactions.
Circadian rhythms are endogenous oscillations present in nearly all organisms from prokaryotes to humans, allowing them to adapt to cyclical environments close to 24 hours. Circadian rhythms are regulated by a central clock, which is based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematodeCaenorhabditis elegans,periodandcasein kinase 1ε/δare conserved aslin-42andkin-20, respectively. Here we studied the involvement oflin-42andkin-20in circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations oflin-42andkin-20generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and seam cells, a population of epidermal stem cells inC. elegansthat undergo multiple divisions during development. Depletion of LIN-42 and KIN-20 specifically in neuronal cells after development was sufficient to lengthen the period of oscillatingsur-5expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.