Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 “phamilies” of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three—encoding tape-measure proteins, lysins, and minor tail proteins—are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.
SummaryNormal cells respond appropriately to various signals, while sustaining proper developmental programs and tissue homeostasis. Inappropriate signal reception, response or attenuation, can upset the normal balance of signaling within cells, leading to dysfunction or tissue malformation. To understand the molecular mechanisms that regulate protein-kinase-based signaling in the context of tissue morphogenesis, we analyzed the domain requirements of Drosophila Slpr, a mixed-lineage kinase (MLK), for Jun N-terminal kinase (JNK) signaling. The N-terminal half of Slpr is involved in regulated signaling whereas the C-terminal half promotes cortical protein localization. The SH3 domain negatively regulates Slpr activity consistent with autoinhibition via a conserved proline motif. Also, like many kinases, conserved residues in the activation segment of the catalytic domain regulate Slpr. Threonine 295, in particular, is essential for function. Slpr activation requires dual input from the MAP4K Misshapen (Msn), through its C-terminal regulatory domain, and the GTPase Rac, which both bind to the LZ-CRIB region of Slpr in vitro. Although Rac is sufficient to activate JNK signaling, our results indicate that there are Slpr-independent functions for Rac in dorsal closure. Finally, expression of various Slpr constructs alone or with upstream activators reveals a wide-ranging response at the cell and tissue level.
Defining context specific requirements for proteins and pathways is a major challenge in the study of signal transduction. For example, the stress-activated protein kinase (SAPK) pathways are comprised of families of closely related transducers that are activated in a variety of tissues and contexts during development and organismal homeostasis. Consequently, redundant and pleiotropic effects have hampered a complete understanding of the individual contributions of transducers in distinct contexts. Here, we report on the function of a context-specific regulatory phosphorylation site, PXSP, in the Drosophila mixed lineage kinase protein, Slpr, a mitogen-activated protein kinase kinase kinase (MAP3K) in the Jun Kinase (JNK) pathway. Genetic analysis of the function of non-phosphorylatable (PXAP) and phosphomimetic mutant (PXEP) Slpr transgenes in several distinct contexts revealed minimal effects in JNK-dependent tissue closure processes but differential requirements in heat stress response. In particular, PXAP expression resulted in sensitivity of adults to sustained heat shock, like p38 and JNK pathway mutants. In contrast, PXEP overexpression conferred some resistance. Indeed, phosphorylation of the PXSP motif is enriched under heat shock conditions and requires in part, the p38 kinases for the enrichment. These data suggest that coordination of signaling between p38 and Slpr serves to maintain JNK signaling during heat stress. In sum, we demonstrate a novel role for JNK signaling in the heat shock response in flies and identify a posttranslational modification on Slpr, at a conserved site among MAP3K mixed lineage kinase family members, which bolsters stress resistance with negligible effects on JNK-dependent developmental processes.
Achieving a deep understanding of the many topics covered in middle school biology classes is difficult for many students. One way to help students learn these topics is through scenario-based learning, which enhances students’ performance. The scenario-based problem-solving module presented here, “The Strawberry Caper,” not only meets but connects ecological and genetic concepts that are required standards in middle school. Here, students are required to provide expert witness for a patent-infringement claim against an organic strawberry farmer by a large neighboring company. The students must think critically and formulate and test hypotheses to provide evidence for the case. Through phenotypic and genotypic analyses, the students are immersed in an inquiry-driven investigation that provides a real-world context for topics covered in the classroom. This, interspersed with integration of concepts, promotes understanding and application of these topics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.