Summary
Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking (“endozepine”) roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a novel therapy for epilepsy and other neurological disorders.
The superior longitudinal fasciculus (SLF) II and cingulum are two white matter tracts important for attention and other frontal lobe functions. These functions are often disturbed in children with drug-resistant (DR) partial epilepsy even when no abnormalities are seen on conventional MRI. We set out to determine whether abnormalities in these structures might be depicted on diffusion tensor imaging (DTI) studies in the absence of abnormalities on conventional MRI. We compared the DTI findings of 12 children with DR-partial epilepsy to those of 12 age- and gender-matched controls. We found that the fractional anisotropy (FA) values in the SLF II of the patients were significantly lower than those of the controls (mean: 0.398±0.057, 0.443±0.059, p=0.002). Similarly apparent diffusion coefficient (ADC) and parallel diffusivity values of the SLF II were also significantly lower in the patients. There were no differences in the FA and ADC values of the cingulum. Our findings are consistent with abnormal structural connectivity of the frontal lobe in children with DR-partial epilepsy and provide a possible explanation for the previously reported functional abnormalities related to the SLF II in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.