TERT-locus single nucleotide polymorphisms (SNPs) and leucocyte telomere measures are reportedly associated with risks of multiple cancers. Using the iCOGs chip, we analysed ~480 TERT-locus SNPs in breast (n=103,991), ovarian (n=39,774) and BRCA1 mutation carrier (11,705) cancer cases and controls. 53,724 participants have leucocyte telomere measures. Most associations cluster into three independent peaks. Peak 1 SNP rs2736108 minor allele associates with longer telomeres (P=5.8×10 −7 ), reduced estrogen receptor negative (ER-negative) (P=1.0×10 −8 ) and BRCA1 mutation carrier (P=1.1×10 −5 ) breast cancer risks, and altered promoter-assay signal. Peak 2 SNP rs7705526 minor allele associates with longer telomeres (P=2.3×10 −14 ), increased low malignant potential ovarian cancer risk (P=1.3×10 −15 ) and increased promoter activity. Peak 3 SNPs rs10069690 and rs2242652 minor alleles increase ER-negative (P=1.2×10 −12 ) and BRCA1 mutation carrier (P=1.6×10 −14 ) breast and invasive ovarian (P=1.3×10 −11 ) cancer risks, but not via altered telomere length. The cancer-risk alleles of rs2242652 and rs10069690 respectively increase silencing and generate a truncated TERT splicevariant.
Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs (lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known about the post-transcriptional regulation of lncRNAs and their half-lives. Although many are easily detectable by a variety of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide. Utilizing a custom noncoding RNA array, we determined the half-lives of~800 lncRNAs and~12,000 mRNAs in the mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range, comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread functionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life < 2 h) intergenic, cis-antisense, and intronic lncRNAs, as well as lncRNAs showing extreme stability (half-life > 16 h). Analysis of lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated widespread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly, one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability. matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive annotation of~7200 mouse lncRNAs.
Purpose: Relapsed or refractory diffuse large B-cell lymphoma (rrDLBCL) is fatal in 90% of patients, and yet little is known about its biology.Experimental Design: Using exome sequencing, we characterized the mutation profiles of 38 rrDLBCL biopsies obtained at the time of progression after immunochemotherapy. To identify genes that may be associated with relapse, we compared the mutation frequency in samples obtained at relapse to an unrelated cohort of 138 diagnostic DLBCLs and separately amplified specific mutations in their matched diagnostic samples to identify clonal expansions.Results: On the basis of a higher frequency at relapse and evidence for clonal selection, TP53, FOXO1, MLL3 (KMT2C), CCND3, NFKBIZ, and STAT6 emerged as top candidate genes implicated in therapeutic resistance. We observed individual examples of clonal expansions affecting genes whose mutations had not been previously associated with DLBCL including two regulators of NF-kB: NFKBIE and NFKBIZ. We detected mutations that may be affect sensitivity to novel therapeutics, such as MYD88 and CD79B mutations, in 31% and 23% of patients with activated B-cell-type of rrDLBCL, respectively. We also identified recurrent STAT6 mutations affecting D419 in 36% of patients with the germinal center B (GCB) cell rrDLBCL. These were associated with activated JAK/STAT signaling, increased phospho-STAT6 protein expression and increased expression of STAT6 target genes.Conclusions: This work improves our understanding of therapeutic resistance in rrDLBCL and has identified novel therapeutic opportunities especially for the high-risk patients with GCB-type rrDLBCL.
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.