Summary
The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone, leptin, modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA, and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.
Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures. Young (periweaning) A+P LEPR-KO mice exhibit hyperphagia and decreased energy expenditure, with increased weight gain, oxidative sparing of triglycerides, and increased fat accumulation. Interestingly, however, many of these abnormalities were attenuated in adult animals, and high doses of leptin partially suppress food intake in the A+P LEPR-KO mice. Although mildly hyperinsulinemic, the A+P LEPR-KO mice displayed normal glucose tolerance and fertility. Thus, AgRP/NPY and POMC neurons each play mandatory roles in aspects of leptin-regulated energy homeostasis, high leptin levels in adult mice mitigate the importance of leptin-responsiveness in these neurons for components of energy balance, suggesting the presence of other leptin-regulated pathways that partially compensate for the lack of leptin action on the POMC and AgRP/NPY neurons.
Summary
Leptin signals the repletion of fat stores, acting in the CNS to permit energy utilization by a host of autonomic and neuroendocrine processes and to decrease feeding. While much recent research has focused on the leptin-regulated circuitry of the hypothalamic arcuate nucleus (ARC), the majority of brain leptin receptor (LepRb)-expressing neurons lie outside the ARC in other brain regions known to modulate energy balance. Each set of LepRb neurons throughout the brain presumably mediates unique aspects of leptin action, and understanding the function for LepRb-expressing neurons throughout the brain represents a crucial next step in the study of energy homeostasis.
The increasing incidence of obesity in developed nations represents an ever-growing challenge to health care by promoting diabetes and other diseases. The discovery of the hormone, leptin, a decade ago has facilitated the acquisition of new knowledge regarding the regulation of energy balance. A great deal remains to be discovered regarding the molecular and anatomic actions of leptin, however. Here, we discuss the mechanisms by which leptin activates intracellular signals, the roles that these signals play in leptin action in vivo, and sites of leptin action in vivo. Using "reporter" mice, in which LRb-expressing (long form of the leptin receptor) neurons express the histological marker, -galactosidase, coupled with the detection of LRb-mediated signal transducer and activator of transcription 3 signaling events, we identified LRb expression in neuronal populations both within and outside the hypothalamus. Understanding the regulation and physiological function of these myriad sites of central leptin action will be a crucial next step in the quest to understand mechanisms of leptin action and energy balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.