Objective Insulin must move from the blood to the interstitium to initiate signaling, yet access to the interstitium may be impaired in cases of insulin resistance, such as obesity. We investigated whether consuming a short- and long-term high-fat diet (HFD) impairs insulin access to skeletal muscle, the major site of insulin-mediated glucose uptake. Methods Male mongrel dogs were divided into 3 groups consisting of control diet (n=16), short-term (n=8) and long-term HFD (n=8). Insulin sensitivity was measured with intravenous glucose tolerance tests. A hyperinsulinemic euglycemic clamp was performed in each animal at the conclusion of the study. During the clamp, lymph fluid was measured as a representation of the interstitial space to assess insulin access to muscle. Results Short- and long-term HFD induced obesity and reduced insulin sensitivity. Lymph insulin concentrations were approximately 50% of plasma insulin concentrations under control conditions. Long-term HFD caused fasting plasma hyperinsulinemia, however, interstitial insulin concentrations were not increased, suggesting impaired insulin access to muscle. Conclusions A HFD rapidly induces insulin resistance at the muscle and impairs insulin access under basal insulin concentrations. Hyperinsulinemia induced by a long-term HFD may be a compensatory mechanism necessary to maintain healthy insulin levels in muscle interstitium.
Although the β-cells secrete insulin, the liver, with its first-pass insulin extraction (FPE), regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is a major determinant of insulin sensitivity (SI). We studied the intricate relationship among FPE, SI, and fasting insulin. We used a direct method of measuring FPE, the paired portal/peripheral infusion protocol, where insulin is infused stepwise through either the portal vein or a peripheral vein in healthy young dogs ( = 12). FPE is calculated as the difference in clearance rates (slope of infusion rate vs. steady insulin plot) between the paired experiments. Significant correlations were found between FPE and clamp-assessed SI ( = 0.74), FPE and fasting insulin ( = -0.64), and SI and fasting insulin ( = -0.67). We also found a wide variance in FPE (22.4-77.2%; mean ± SD 50.4 ± 19.1) that is reflected in the variability of plasma insulin (48.1 ± 30.9 pmol/L) and SI (9.4 ± 5.8 × 10 dL · kg · min · [pmol/L]). FPE could be the nexus of regulation of both plasma insulin and SI.
Aims/hypothesis The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. Methods We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n=26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n=12), a salmon oil diet (rich in polyunsaturated fat; n=8) or a control diet (n=6). Results High-fat feeding with lard increased bodyweight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased bodyweight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. Conclusions/interpretation These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.
BackgroundThere is increasing evidence that adipocytes play an active role in the cancer microenvironment. We have previously reported that adipocytes interact with acute lymphoblastic leukemia (ALL) cells, contributing to chemotherapy resistance and treatment failure. In the present study, we investigated whether part of this resistance is due to adipocyte provision of lipids to ALL cells.MethodsWe cultured 3T3-L1 adipocytes, and tested whether ALL cells or ALL-released cytokines induced FFA release. We investigated whether ALL cells took up these FFA, and using fluorescent tagged BODIPY-FFA and lipidomics, evaluated which lipid moieties were being transferred from adipocytes to ALL. We evaluated the effects of adipocyte-derived lipids on ALL cell metabolism using a Seahorse XF analyzer and expression of enzymes important for lipid metabolism, and tested whether these lipids could protect ALL cells from chemotherapy. Finally, we evaluated a panel of lipid synthesis and metabolism inhibitors to determine which were affected by the presence of adipocytes.ResultsAdipocytes release free fatty acids (FFA) when in the presence of ALL cells. These FFA are taken up by the ALL cells and incorporated into triglycerides and phospholipids. Some of these lipids are stored in lipid droplets, which can be utilized in states of fuel deprivation. Adipocytes preferentially release monounsaturated FFA, and this can be attenuated by inhibiting the desaturating enzyme steroyl-CoA decarboxylase-1 (SCD1). Adipocyte-derived FFA can relieve ALL cell endogenous lipogenesis and reverse the cytotoxicity of pharmacological acetyl-CoA carboxylase (ACC) inhibition. Further, adipocytes alter ALL cell metabolism, shifting them from glucose to FFA oxidation. Interestingly, the unsaturated fatty acid, oleic acid, protects ALL cells from modest concentrations of chemotherapy, such as those that might be present in the ALL microenvironment. In addition, targeting lipid synthesis and metabolism can potentially reverse adipocyte protection of ALL cells.ConclusionThese findings uncover a previously unidentified interaction between ALL cells and adipocytes, leading to transfer of FFA for use as a metabolic fuel and macromolecule building block. This interaction may contribute to ALL resistance to chemotherapy, and could potentially be targeted to improve ALL treatment outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.