Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.
The production of reactive aldehydes such as 4-hydroxynonenal (4-HNE) is a key event in the pathogenesis of alcoholic liver disease which ranges from simple steatosis to fibrosis. The lipid phosphatase PTEN plays a central role in the regulation of lipid metabolism in the liver. In the present study, the effects of chronic ethanol feeding and carbonylation on the PTEN signaling pathway were examined in a 9-week mouse feeding model for ALD. Chronic ethanol consumption resulted in altered REDOX homeostasis as evidenced by decreased GSH, decreased Trx1 and increased GST activity. Both PTEN expression and phosphorylation was significantly increased in the livers of ethanol-fed mice. Carbonylation of PTEN increased significantly in the ethanol-fed mice compared to pair-fed control animals corresponding to decreased PTEN 3-phosphatase activity. Concomitantly, increased expression of Akt2 along with increased Akt phosphorylation at residues Thr308, Thr450 and Ser473 was observed resulting in increased Akt2 activity in the ethanol-fed animals. Akt2 activation corresponded to a decrease in cytosolic SREBP and ChREBP. Subsequent LC-MS/MS analysis of 4-HNE modified recombinant human PTEN identified Michael addition adducts of 4-HNE on Cys71, Cys136, Lys147, Lys223, Cys250, Lys254, Lys313, Lys327 and Lys344. Computational based molecular modeling analysis of 4-HNE adducted to Cys71 near the active site and Lys327 in the C2 domain of PTEN suggest inhibition of enzyme catalysis via either stearic hindrance of the active site pocket or by prevention of C2 domain-dependent PTEN function. We hypothesize that 4-HNE-mediated PTEN inhibition contributes to the observed activation of Akt2 suggesting a possible novel mechanism of lipid accumulation in response to increased reactive aldehyde production during chronic ethanol administration in mice.
4-Hydroxynonenal (4-HNE) is an endogenous product of lipid peroxidation known to play a role in cellular signaling through protein modification and is a major precursor for protein carbonyl adducts found in alcoholic liver disease (ALD). In the present study, a greater than 2-fold increase in protein carbonylation of sirtuin 3 (SIRT3), a mitochondrial class III histone deacetylase, is reported in liver mitochondrial extracts of ethanol consuming mice. The consequence of this in vivo carbonylation on SIRT3 deacetylase activity is unknown. Interestingly, mitochondrial protein hyperacetylation was observed in a time-dependent increase in a model of chronic ethanol consumption; however, the underlying mechanisms for this remain unknown. Tandem mass spectrometry was used to identify and characterize the in vitro covalent modification of rSIRT3 by 4-HNE at Cys280, a critical zinc-binding residue, and the resulting inhibition of rSIRT3 activity via pathophysiologically relevant concentrations of 4-HNE. Computational-based molecular modeling simulations indicate that 4-HNE modification alters the conformation of the zinc-binding domain inducing minor changes within the active site, resulting in the allosteric inhibition of SIRT3 activity. These conformational data are supported by the calculated binding energies derived from molecular docking studies suggesting the substrate peptide of acetyl-CoA synthetase 2 (AceCS2-Kac), displays a greater affinity for native SIRT3 compared with the 4-HNE adducted protein. The results of this study characterize altered mitochondrial protein acetylation in a mouse model of chronic ethanol ingestion and thiol-specific allosteric inhibition of rSIRT3 resulting from 4-HNE adduction.
Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of in vivo protein targets and the consequences of these modifications, however, has not been conducted. In this report, we describe identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR) and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel in vivo sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.