The benthic microbial mat community of the only permanent hypersaline natural inland lake of Western Europe, 'La Salada de Chiprana', northeastern Spain, was structurally and functionally analyzed. The ionic composition of the lake water is characterized by high concentrations of magnesium and sulfate, which were respectively 0.35 and 0.5 M at the time of sampling while the total salinity was 78 g l(-1). Community composition was analyzed by microscopy, high-performance liquid chromatography (HPLC) pigment analyses and by studying culturable bacteria from different functional groups. Therefore, denaturing gradient gel electrophoresis (DGGE) was applied on most probable number (MPN) dilution cultures. Microscopy revealed that a thin layer of Chloroflexus-like bacteria overlaid various cyanobacteria-dominated layers each characterized by different morphotypes. DGGE analysis of MPN dilution cultures from distinct mat layers showed that various phylotypes of anoxygenic phototrophic, aerobic heterotrophic, colorless sulfur-, and sulfate-reducing bacteria were present. The mats were furthermore functionally studied and attention was focussed on the relationship between oxygenic primary production and the flow of carbon through the microbial community. Microsensor techniques, porewater and sediment photopigment analysis were applied in order to estimate oxygenic photosynthetic rates, daily dynamics of (in)organic carbon porewater concentration and migration behavior of phototrophs. Chiprana microbial mats produced dissolved organic carbon (DOC) both during the day and night. It was estimated that 14% of the mats gross photosynthetic production and 49% of the mats net photosynthetic production diffused out of the mat in the form of low molecular mass fatty acids, although these compounds made up only 2% of the total DOC pool. The high flux of dissolved fatty acids from the microbial mat to the water column may explain why in this system Chloroflexus-like bacteria proliferate on top of the cyanobacterial layers since these photoheterotrophic bacteria grow preferably on organic phototrophic exudates. Furthermore it may also explain why high numbers of viable sulfate-reducing bacteria were found in the fully oxygenated sediment surface layers. These organisms apparently do not have to compete with aerobic heterotrophic community members due to the ample availability of organic substrates. Moreover, the high production of DOC strongly indicates that the mat community was nutrient limited in its growth. Photopigment analysis revealed furthermore that chlorophyll a (Chla) and three of its allomeres had a complementary depth distribution what suggests that the Chla allomeres are functional adaptations to differences in light quality and/or quantity and may be species specific.
Stromatolites date back some 3.5 billion years and constitute the most common and conspicuous fossils through the Proterozoic. These organosedimentary structures decreased dramatically in diversity and abundance by the late Neoproterozoic, a phenomenon often ascribed to destructive grazing by newly evolved metazoans. We investigated the concurrent processes of microbial calcification and metazoan bioerosion in one of the few locations (Rio Mesquites, Cuatro Ciénegas, Coahuila, Mexico) where living freshwater stromatolites, formed by cyanobacteria and diatoms, coexist with significant populations of metazoan grazers. We used microsensor chemical profiling and monitoring of bulk water Ca2+ concentrations to determine calcification rates and their dependence on microbial metabolism. The bioerosive impact resulting from grazing by endemic hydrobiid gastropods was assessed by gravimetric quantification of carbonaceous faecal pellet production. Calcification was clearly light‐dependent, reaching maximal rates (saturation) at low incident light intensity, and was surprisingly efficient, with O2/Ca2+ exchange ratios well above unity, and with absolute rates similar to those found in corals. However, the erosive action of grazing snails removed most of these carbonate inputs from the oncolites. Thus, a precarious balance between constructive and destructive geobiological processes was at play in the system. The fact that accretion barely exceeded bioerosion in an environment highly conducive to calcification supports the potential impact of faunal grazing as causal agent in the demise of stromatolites in the late Proterozoic. Our findings indicate that a search for fossil evidence of bioerosive grazing in the form of carbonaceous faecal pellets associated with fossil stromatolites may provide a means to test that hypothesis directly.
We investigated the hypothesis that sulfate reduction rather than oxygenic photosynthesis promotes calcification in a hypersaline microbial mat by increasing the ion concentration product: ICP ) than in dark mats (0.75 mmol L Ϫ1 ), although the dissolved inorganic carbon (DIC) pore-water concentration in the former was much lower (5.9 mmol L Ϫ1 ) than in the latter (9.9 mmol L Ϫ1 ). The pH-induced rise in carbonate concentration in the light was the main factor influencing the ICP, while changes in Ca 2ϩ concentration played a subsidiary role. Sulfate reduction did not result in a net pH increase in these mats, as rates in the photic zone were comparable between illuminated and dark mats (4 and 5 nmol cm Ϫ2 h Ϫ1 , respectively), and pH increased in illuminated mats but not in dark mats. Calcium carbonate precipitation in the photic zone of these hypersaline mats is primarily controlled by photosynthesisinduced pH and carbonate concentration increases. However, heterotrophic bacteria, including sulfate reducers, play an important complementary role in calcification because they maintain high concentrations of DIC in the mat pore water.
Microbial mats are characterized by high primary production but low growth rates, pointing to a limitation of growth by the lack of nutrients or substrates. We identified compounds that instantaneously stimulated photosynthesis rates and oxygen consumption rates in a hypersaline microbial mat by following the short-term response (c. 6 h) of these processes to addition of nutrients, organic and inorganic carbon compounds, using microsensors. Net photosynthesis rates were not stimulated by compound additions. However, both gross photosynthesis and oxygen consumption were substantially stimulated (by a minimum of 25%) by alanine (1 mM) and glutamate (3.5 mM) as well as by phosphate (0.1 mM). A low concentration of ammonium (0.1 mM) did not affect photosynthesis and oxygen consumption, whereas a higher concentration (3.5 mM) decreased both process rates. High concentrations of glycolate (5 mM) and phosphate (1 mM) inhibited gross photosynthesis but not oxygen consumption, leading to a decrease of net photosynthesis. Photosynthesis was not stimulated by addition of inorganic carbon, nor was oxygen consumption stimulated by organic compounds like glycolate (5 mM) or glucose (5 mM), indicating that carbon was efficiently cycled within the mat. Photosynthesis and oxygen consumption were apparently tightly coupled, because stimulations always affected both processes to the same extent, which resulted in unchanged net photosynthesis rates. These findings illustrate that microsensor techniques, due to their ability to quantify all three processes, can clarify community responses to nutrient enrichment studies much better than techniques that solely monitor net fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.