This study examines how differential auditor quality can affect clients' tax noncompliance at different book-tax conformity levels. Overall, we find that high-quality auditors are associated with client firms' better tax compliance. Specifically, high-quality auditors are effective in constraining book-tax-conforming noncompliance because of the direct linkage between financial and tax reporting for such noncompliance at both the higher and the lower conformity periods. In contrast, high-quality auditors' constraining effect on book-tax-difference noncompliance is significant only in the lower conformity period when there are more opportunities for reporting irregularities. Furthermore, firms that switch from a low- to a high-quality auditor have better tax compliance after the switch. This study contributes to the literature by providing evidence that high-quality auditors not only can constrain clients' earnings management, but can also constrain tax noncompliance. JEL Classifications: M41; M42.
Predictive modeling is a critical technique in many real-world applications, including auto insurance rate-making and the decision making of rate filings review for regulation purposes. It is also important in predicting financial and economic risk in business and economics. Unlike testing hypotheses in statistical inference, results obtained from predictive modeling serve as statistical evidence for the decision making of the underlying problem and discovering the functional relationship between the response variable and the predictors. As a result of this, the variable importance measures become an essential aspect of helping to better understand the contributions of predictors to the built model. In this work, we focus on the study of using generalized linear models (GLM) for the size of loss distributions. In addition, we address the problem of measuring the importance of the variables used in the GLM to further evaluate their potential impact on insurance pricing. In this regard, we propose to shift the focus from variable importance measures of factor levels to factors themselves and to develop variable importance measures for factors included in the model. Therefore, this work is exclusively for modeling with categorical variables as predictors. This work contributes to the further development of GLM modeling to make it even more practical due to this added value. This study also aims to provide benchmark estimates to allow for the regulation of insurance rates using GLM from the variable importance aspect.
The study of actuarial fairness in auto insurance has been an important issue in the decision making of rate regulation. Risk classification and estimating risk relativities through statistical modeling become essential to help achieve fairness in premium rates. However, because of minor adjustments to risk relativities allowed by regulation rules, the rates charged eventually may not align with the empirical risk relativities calculated from insurance loss data. Therefore, investigating the relationship between the premium rates and loss costs at different risk factor levels becomes important for studying insurance fairness, particularly from rate regulation perspectives. This work applies statistical models to rate and classification data from the automobile statistical plan to investigate the disparities between insurance premiums and loss costs. The focus is on major risk factors used in the rate regulation, as our goal is to address fairness at the industry level. Various statistical models have been constructed to validate the suitableness of the proposed methods that determine a fixed effect. The fixed effect caused by the disparity of loss cost and premium rates is estimated by those statistical models. Using Canadian data, we found that there are no significant excessive premiums charged at the industry level, but the disparity between loss cost and premiums is high for urban drivers at the industry level. This study will help better understand the extent of auto insurance fairness at the industry level across different insured groups characterized by risk factor levels. The proposed fixed-effect models can also reveal the overall average loss ratio, which can tell us the fairness at the industry level when compared to loss ratios by the regulation rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.