We applied Illumina Human Methylation450K array to perform a genomic-scale single-site resolution DNA methylation analysis in neuronal and nonneuronal (primarily glial) nuclei separated from the orbitofrontal cortex of postmortem human brain. The findings were validated using enhanced reduced representation bisulfite sequencing. We identified thousands of sites differentially methylated (DM) between neuronal and nonneuronal cells. The DM sites were depleted within CpG-island–containing promoters but enriched in predicted enhancers. Classification of the DM sites into those undermethylated in neurons (neuronal type) and those undermethylated in nonneuronal cells (glial type), combined with findings of others that methylation within control elements typically negatively correlates with gene expression, yielded large sets of predicted neuron-specific and non–neuron-specific genes. These sets of predicted genes were in excellent agreement with the available direct measurements of gene expression in human and mouse. We also found a distinct set of DNA methylation patterns that were unique for neuronal cells. In particular, neuronal-type differential methylation was overrepresented in CpG island shores, enriched within gene bodies but not in intergenic regions, and preferentially harbored binding motifs for a distinct set of transcription factors, including neuron-specific activity-dependent factors. Finally, non-CpG methylation was substantially more prevalent in neurons than in nonneuronal cells.
Serotonin 2C receptor (5-HT2CR) exerts a major inhibitory influence on dopamine (DA) neurotransmission within the mesocorticolimbic DA pathway that is implicated in drug reward and goal-directed behaviors. 5-HT2CR pre-mRNA undergoes adenosine-to-inosine editing generating numerous receptor isoforms in brain. Because editing influences 5-HT2CR efficacy, individual differences in editing might influence dopaminergic function and, thereby, contribute to inter-individual vulnerability to drug addiction.Liability to drug-related behaviors in rats can be predicted by the level of motor activity in response to a novel environment. Rats with a high locomotor response (high responders; HRs) exhibit enhanced acquisition and maintenance of drug self-administration compared to rats with a low response (low responders; LRs). Here we examined 5-HT2CR mRNA editing and expression in HR and LR phenotypes in order to investigate the relationship between 5-HT2CR function and behavioral traits relevant to drug addiction vulnerability. Three regions of the mesocorticolimbic circuitry (ventral tegmental area (VTA), nucleus accumbens (NuAc) shell, and medial prefrontal cortex (PFC)) were examined.5-HT2CR mRNA expression and editing was significantly higher in NuAc shell compared to both PFC and VTA, implying significant differences in function (including constitutive activity) among 5-HT2CR neuronal populations within the circuitry. The regional differences in editing could, at least in part, arise from the variations in expression levels of the editing enzyme, ADAR2, and/or from the variations in the ADAR2/ADAR1 ratio observed in the study. No differences in the 5-HT2CR expression were detected between the behavioral phenotypes. However, editing was higher in the PFC of HRs vs. LRs, implicating this region in the pathophysiology of drug abuse liability.
IntroductionGlutamate is the main neurotransmitter responsible for excitatory neurotransmission throughout the brain. Glutamate serves as a ligand for G-protein coupled metabotropic and ionotropic (iGluRs) receptors. The latter consists of N-methyl-D-aspartate, α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and kainate (KA) subtypes. Glutamate dysfunction has been linked to numerous diseases, including schizophrenia, bipolar disorder and major depressive disorder. 1-6The AMPA and KA receptors are ligand-gated nonselective cation channels that mediate fast excitatory neurotransmission. Each receptor is a tetramer composed of a combination of subunits encoded by separate genes, GluA1-4 for AMPA, and GluK1-3 and KA1-2 for KA receptors. Individual subunit transcripts undergo posttranscriptional modifications that substantially alter the structure and function of the resulting receptors. Alternative splicing of GluA1-4 generates 2 different variants of each subunit (flip or flop), forming AMPA receptors with distinct kinetic properties. [7][8][9] In addition, AMPA and KA receptor transcripts can be modified by RNA editing. 10The most frequent RNA editing process in eukaryotes involves conversion of adenosine to inosine catalyzed by the adenosine deaminases acting on RNA (ADAR) enzymes.11 As inosine is interpreted as a guanosine during splicing and translation, the editing event can result in recoding. A total of Background: Dysfunction of glutamate neurotransmission has been implicated in the pathology of schizophrenia and bipolar disorder, and one mechanism by which glutamate signalling can be altered is through RNA editing of ionotropic glutamate receptors (iGluRs). The objectives of the present study were to evaluate the editing status of iGluRs in the human prefrontal cortex, determine whether iGluR editing is associated with psychiatric disease or suicide and evaluate a potential association between editing and alternative splicing in the α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) iGluR subunits' pre-mRNA. Methods: We studied specimens derived from patients with antemortem diagnoses of bipolar disorder (n = 31) or schizophrenia (n = 34) who died by suicide or other causes, and from psychiatrically healthy controls (n = 34) who died from causes other than suicide. The RNA editing at all 8 editing sites within AMPA (GluA2-4 subunits) and kainate (GluK1-2 subunits) iGluRs was analyzed using a novel real-time quantitative polymerase chain reaction assay. Results: No differences in editing were detected among schizophrenia, bipolar or control groups or between suicide completers and patients who died from causes other than suicide. The editing efficiency was significantly higher in the flop than in the flip splicoforms of GluA3-4 AMPA subunits (all p < 0.001). Limitations: The study is limited by the near absence of specimens from medicationnaive psychiatric patients and considerable variation in medication regimens among individuals, both of which introduce considerable uncertainty into the ana...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.