Virtual reality (VR) is commonplace for training, yet simulated physical activities in VR do not require trainees to engage and contract the muscle groups normally engaged in physical lifting. This paper presents a muscle activity-driven interface to elicit the sensation of forceful, physical exertions when lifting virtual objects. Users contracted and attained predefined muscle activity levels that were calibrated to user-specific muscle activity when lifting the physical counterpart. The overarching goal is to engage the appropriate muscles, and thereby encourage and elicit behaviors normally seen in the physical environment. Activities of 12 key muscles were monitored using electromyography (EMG) sensors while they performed a three-part patient lifting task in a Cave Automatic Virtual Environment. Participants reported higher task mental loads and less physical loads for the virtual lift than the physical lift. Findings suggest the potential to elicit sensation of forceful exertion via EMG feedback but needed fine-tuning to offset perceived workload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.