In September 2006, members of the Sex, Gender and Pain Special Interest Group of the International Association for the Study of Pain met to discuss the following: (1) what is known about sex and gender differences in pain and analgesia; (2) what are the "best practice" guidelines for pain research with respect to sex and gender; and (3) what are the crucial questions to address in the near future? The resulting consensus presented herein includes input from basic science, clinical and psychosocial pain researchers, as well as from recognized experts in sexual differentiation and reproductive endocrinology. We intend this document to serve as a utilitarian and thought-provoking guide for future research on sex and gender differences in pain and analgesia, both for those currently working in this field as well as those still wondering, "Do I really need to study females?" Keywords Sex differences; Gonadal hormones; Estrogens The case for studying sex and gender differences in pain and analgesiaThe pain field has moved from debating whether sex differences in pain exist to recognizing the importance of these differences. Attention is now directed toward understanding (1) what conditions lead to the expression of sex and gender differences in pain experience and reactivity, (2) what mechanisms underlie these differences, and (3) how these differences can inform clinical management of pain.As noted in a recent review, at least 79% of animal studies published in Pain over the preceding 10 years included male subjects only, with a mere 8% of studies on females only, and another 4% explicitly designed to test for sex differences (the rest did not specify) [142]. Given the substantially greater prevalence of many clinical pain conditions in women vs. men [20,199], and growing evidence for sex differences in sensitivity to experimental pain and to analgesics [21,41,213], we recommend that all pain researchers consider testing their hypotheses in both sexes, or if restricted by practical considerations, only in females. It is invalid to assume that data obtained in male subjects will generalize to females, and the best non-human model of the modal human pain sufferer -a woman -is a female animal. If only males are examined in a given study, it is important that a rationale for exclusion of females be provided and that the potential limitation in generalizability of the findings be addressed in the discussion, particularly when examining a pain phenomenon that occurs with greater prevalence or severity in females. In both preclinical and clinical studies, a comparison of both sexes will further our understanding of individual differences in sensitivity to pain and analgesia, thus improving our ability to treat and prevent pain in all people. General considerationsTwo issues of terminology are important. First, the term "sex" refers to biologically based differences, while the term "gender" refers to socially based phenomena. Although biological sex exerts a major influence on one's gender identity, sex and gender a...
There is now strong evidence for sex differences in pain and analgesia. These differences imply that gonadal steroid hormones such as estradiol and testosterone modulate sensitivity to pain and analgesia. The goal of this review is to present an overview of gonadal steroid modulation of pain and analgesia in animals and humans, and to describe mechanisms by which males' and females' biology may differentially predispose them to pain and to analgesic effects of drugs and stress. Evidence is presented to demonstrate that sex differences in pain and analgesia may be both quantitative and qualitative in nature. Current research suggests that sex-specific management of clinical pain will be a reality in the not-so-distant future.
It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.
Marijuana is the most widely used illicit drug in the U.S., and marijuana use by women is on the rise. Women have been found to be more susceptible to the development of cannabinoid abuse and dependence, have more severe withdrawal symptoms, and are more likely to relapse than men. The majority of research in humans suggests that women are more likely to be affected by cannabinoids than men, with reports of enhanced and decreased performance on various tasks. In rodents, females are more sensitive than males to effects of cannabinoids on tests of antinociception, motor activity, and reinforcing efficacy. Studies on effects of cannabinoid exposure during adolescence in both humans and rodents suggest that female adolescents are more likely than male adolescents to be deleteriously affected by cannabinoids. Sex differences in response to cannabinoids appear to be due to activational and perhaps organizational effects of gonadal hormones, with estradiol identified as the hormone that contributes most to the sexually dimorphic effects of cannabinoids in adults. Many, but not all sexually dimorphic effects of exogenous cannabinoids can be attributed to a sexually dimorphic endocannabinoid system in rodents, although the same has not yet been established firmly for humans. A greater understanding of the mechanisms underlying sexually dimorphic effects of cannabinoids will facilitate development of sex-specific approaches to treat marijuana dependence and to use cannabinoid-based medications therapeutically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.